Federated Automated Feature Engineering
- URL: http://arxiv.org/abs/2412.04404v1
- Date: Thu, 05 Dec 2024 18:23:44 GMT
- Title: Federated Automated Feature Engineering
- Authors: Tom Overman, Diego Klabjan,
- Abstract summary: We introduce AutoFE algorithms for the horizontal, vertical, and hybrid FL settings.
We show that the downstream model performance of federated AutoFE is similar to the case where data is held centrally and AutoFE is performed centrally.
- Score: 11.955062839855334
- License:
- Abstract: Automated feature engineering (AutoFE) is used to automatically create new features from original features to improve predictive performance without needing significant human intervention and expertise. Many algorithms exist for AutoFE, but very few approaches exist for the federated learning (FL) setting where data is gathered across many clients and is not shared between clients or a central server. We introduce AutoFE algorithms for the horizontal, vertical, and hybrid FL settings, which differ in how the data is gathered across clients. To the best of our knowledge, we are the first to develop AutoFE algorithms for the horizontal and hybrid FL cases, and we show that the downstream model performance of federated AutoFE is similar to the case where data is held centrally and AutoFE is performed centrally.
Related papers
- Hyper-parameter Optimization for Federated Learning with Step-wise Adaptive Mechanism [0.48342038441006796]
Federated Learning (FL) is a decentralized learning approach that protects sensitive information by utilizing local model parameters rather than sharing clients' raw datasets.
This paper investigates the deployment and integration of two lightweight Hyper- Optimization (HPO) tools, Raytune and Optuna, within the context of FL settings.
To this end, both local and global feedback mechanisms are integrated to limit the search space and expedite the HPO process.
arXiv Detail & Related papers (2024-11-19T05:49:00Z) - IIFE: Interaction Information Based Automated Feature Engineering [11.866061471514582]
We introduce a new AutoFE algorithm, IIFE, based on determining which feature pairs synergize well.
We show how interaction information can be used to improve existing AutoFE algorithms.
arXiv Detail & Related papers (2024-09-07T00:34:26Z) - Automated Parking Planning with Vision-Based BEV Approach [10.936433798200907]
This paper proposes an improved automated parking algorithm based on the A* algorithm, integrating vehicle kinematic models, function optimization, bidirectional search, and Bezier curve optimization.
Compared to traditional algorithms, this approach demonstrates reduced computation time with more challenging collision-risk test cases and improved performance in comfort metrics.
arXiv Detail & Related papers (2024-05-24T15:26:09Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
Foundation models encode rich representations that can be adapted to downstream tasks by fine-tuning.
Current approaches to robust fine-tuning use hand-crafted regularization techniques.
We propose AutoFT, a data-driven approach for robust fine-tuning.
arXiv Detail & Related papers (2024-01-18T18:58:49Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - DIFER: Differentiable Automated Feature Engineering [12.961270020632362]
Feature engineering, a crucial step of machine learning, aims to extract useful features from raw data to improve data quality.
We propose an efficient gradient-based method called DIFER to perform differentiable automated feature engineering in a continuous vector space.
We show that DIFER can significantly improve the performance of various machine learning algorithms and outperform current state-of-the-art AutoFE methods in terms of both efficiency and performance.
arXiv Detail & Related papers (2020-10-17T12:55:45Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - AutoFIS: Automatic Feature Interaction Selection in Factorization Models
for Click-Through Rate Prediction [75.16836697734995]
We propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS)
AutoFIS can automatically identify important feature interactions for factorization models with computational cost just equivalent to training the target model to convergence.
AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service.
arXiv Detail & Related papers (2020-03-25T06:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.