p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay
- URL: http://arxiv.org/abs/2412.04449v2
- Date: Wed, 06 Aug 2025 16:57:39 GMT
- Title: p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay
- Authors: Jun Zhang, Desen Meng, Zhengming Zhang, Zhenpeng Huang, Tao Wu, Limin Wang,
- Abstract summary: p-MoD is an efficient MLLM architecture that significantly reduces training and inference costs while maintaining model performance.<n>We adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing)
- Score: 20.688382669309096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable performance of multimodal large language models (MLLMs) across diverse tasks, the substantial training and inference costs impede their advancement. In this paper, we propose p-MoD, an efficient MLLM architecture that significantly reduces training and inference costs while maintaining model performance. The majority of computation in MLLMs stems from the overwhelming volume of vision tokens processed by the transformer-based LLM. Accordingly, we leverage the Mixture-of-Depths (MoD) mechanism, where each LLM layer selects essential vision tokens to process while skipping redundant ones. However, integrating MoD into MLLMs is non-trivial. To address the challenges of training and inference stability as well as limited training data, we adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing). Moreover, we observe that vision tokens exhibit higher redundancy in deeper layers and thus design a progressive ratio decay (PRD) strategy, which gradually reduces the token retention ratio layer by layer, employing a shifted cosine schedule. This crucial design fully unleashes the potential of MoD, significantly boosting the efficiency and performance of our models. Extensive experiments on two baseline models across 15 benchmarks show that our model matches or even surpasses the performance of corresponding baselines, while requiring only 55.6% TFLOPs and 53.7% KV cache storage during inference, and 77.7% GPU hours during training.
Related papers
- VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation [8.891793681316992]
Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining.<n>While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored.<n>We propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ.
arXiv Detail & Related papers (2025-08-05T11:57:03Z) - PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)
Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.
Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - Orchestrate Multimodal Data with Batch Post-Balancing to Accelerate Multimodal Large Language Model Training [12.911726316306755]
We introduce OrchMLLM, a framework designed to mitigate the inefficiencies in MLLM training caused by Modality Composition Incoherence.<n> Batch Post-Balancing Dispatcher and MLLM Global Orchestrator are used to eliminate mini-batch imbalances in sequential data.<n>OrchMLLM achieves a Model FLOPs Utilization (MFU) of $41.6%$ when training an 84B MLLM with three modalities on $2560$ H100 GPU, outperforming Megatron-LM by up to $3.1times$ in throughput.
arXiv Detail & Related papers (2025-03-31T08:24:23Z) - Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping [13.846838416902575]
A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding.
We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models.
Experimental results demonstrate that Skip-Vision reduces training time by up to 35%, inference FLOPs by 75%, and latency by 45%.
arXiv Detail & Related papers (2025-03-26T04:16:48Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
Homomorphic Encryption (HE) enables us to perform machine learning tasks over encrypted data.
We propose MOFHEI, a framework that optimize the model to make HE-based neural network inference, fast and efficient.
Our framework achieves up to 98% pruning ratio on LeNet, eliminating up to 93% of the required HE operations for performing PI.
arXiv Detail & Related papers (2024-12-10T22:44:54Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [72.68665884790002]
We propose a novel framework to transfer knowledge from l-MLLMs to s-MLLMs.<n>We introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities.<n>We also propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - MoDification: Mixture of Depths Made Easy [36.3113087767816]
mixture of depths (MoD) is proposed as a perfect fit to bring down both latency and memory.
MoDification can achieve up to 1.2x speedup in latency and 1.8x reduction in memory.
arXiv Detail & Related papers (2024-10-18T08:22:07Z) - $γ-$MoD: Exploring Mixture-of-Depth Adaptation for Multimodal Large Language Models [87.43596173378913]
We propose an innovative strategy for existing MLLMs called $gamma$-MoD.
In $gamma$-MoD, a novel metric is proposed to guide the deployment of MoDs in the MLLM.
Based on ARank, we propose two novel designs to maximize the computational sparsity of MLLM.
arXiv Detail & Related papers (2024-10-17T17:59:53Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoD is a framework designed to enable the efficient training of small-scale Multimodal Language Models.
We optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts architecture into the language model.
We also propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration.
arXiv Detail & Related papers (2024-08-28T15:52:23Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities.
LVLMs are often problematic due to their massive computational/energy costs and carbon consumption.
We propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs.
arXiv Detail & Related papers (2023-10-04T17:34:00Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.