VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
- URL: http://arxiv.org/abs/2508.03351v1
- Date: Tue, 05 Aug 2025 11:57:03 GMT
- Title: VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
- Authors: Yufei Xue, Yushi Huang, Jiawei Shao, Jun Zhang,
- Abstract summary: Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining.<n>While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored.<n>We propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ.
- Score: 8.891793681316992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
Related papers
- Dual-Stage Value-Guided Inference with Margin-Based Reward Adjustment for Fast and Faithful VLM Captioning [23.851747078717473]
We introduce textbfValue-guided Inference with Margin-based Reward (ViMaR), a two-stage inference framework that improves both efficiency and output fidelity.<n>ViMaR generates captions that are significantly more reliable, factually accurate, detailed, and explanatory, while achieving over 4$times$ speedup.
arXiv Detail & Related papers (2025-06-18T17:23:36Z) - Event-Priori-Based Vision-Language Model for Efficient Visual Understanding [13.540340702321911]
Event-Priori-Based Vision-Language Model (EP-VLM) improves VLM inference efficiency.<n>EP-VLM uses motion priors derived from dynamic event vision to enhance VLM efficiency.
arXiv Detail & Related papers (2025-06-09T10:45:35Z) - DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)<n>Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.<n>Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - Saliency-driven Dynamic Token Pruning for Large Language Models [32.903622070917194]
Saliency-driven Dynamic Token Pruning (SDTP)<n>A lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state.<n>A ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score.
arXiv Detail & Related papers (2025-04-06T15:15:07Z) - Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping [13.846838416902575]
A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding.<n>We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models.<n> Experimental results demonstrate that Skip-Vision reduces training time by up to 35%, inference FLOPs by 75%, and latency by 45%.
arXiv Detail & Related papers (2025-03-26T04:16:48Z) - RSQ: Learning from Important Tokens Leads to Better Quantized LLMs [65.5558181902098]
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining.<n>We propose RSQ (Rotate, Scale, then Quantize), which applies rotations to the model to mitigate outliers.<n>We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families.
arXiv Detail & Related papers (2025-03-03T18:46:33Z) - MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization [15.01214559812713]
MQuant is a post-training quantization framework designed to tackle the challenges of multimodal large language models (MLLMs)<n>On five mainstream MLLMs (including Qwen-VL, Mini-V, CogVLM2), MQuant under W4A8 achieves near-floating-point accuracy (1% degradation) while reducing inference latency by up to 30%.
arXiv Detail & Related papers (2025-02-01T13:08:02Z) - p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay [20.688382669309096]
p-MoD is an efficient MLLM architecture that significantly reduces training and inference costs while maintaining model performance.<n>We adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing)
arXiv Detail & Related papers (2024-12-05T18:58:03Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - LLM-wrapper: Black-Box Semantic-Aware Adaptation of Vision-Language Models for Referring Expression Comprehension [45.856469849910496]
Vision Language Models (VLMs) have demonstrated remarkable capabilities in various open-vocabulary tasks, yet their zero-shot performance lags behind task-specific fine-tuned models.<n>We propose LLM-wrapper, a method for 'black-box' adaptation ofVLMs for the Referring Expression task using Large Language Models (LLMs)<n>Our approach offers several advantages: it enables the adaptation of closed-source models without needing access to their internal workings.
arXiv Detail & Related papers (2024-09-18T12:32:25Z) - Q-Sparse: All Large Language Models can be Fully Sparsely-Activated [93.45300714803429]
We introduce Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs)
Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference.
We also introduce Block Q-Sparse for batch training and inference.
arXiv Detail & Related papers (2024-07-15T17:59:29Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.