論文の概要: Semantic Consistency-Based Uncertainty Quantification for Factuality in Radiology Report Generation
- arxiv url: http://arxiv.org/abs/2412.04606v1
- Date: Thu, 05 Dec 2024 20:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:42.652049
- Title: Semantic Consistency-Based Uncertainty Quantification for Factuality in Radiology Report Generation
- Title(参考訳): 放射線診断レポート生成における意味的一貫性に基づく不確実性定量化
- Authors: Chenyu Wang, Weichao Zhou, Shantanu Ghosh, Kayhan Batmanghelich, Wenchao Li,
- Abstract要約: 生成医療ビジョン大言語モデル(VLLM)は幻覚を起こしやすく、不正確な診断情報を生成できる。
報告レベルと文レベルの不確実性の両方を提供するセマンティック一貫性に基づく不確実性定量化フレームワークを新たに導入する。
高不確実性レポートを控えることで、私たちのアプローチは事実性スコアを10ドル%改善し、20ドル%のレポートを拒否します。
- 参考スコア(独自算出の注目度): 20.173287130474797
- License:
- Abstract: Radiology report generation (RRG) has shown great potential in assisting radiologists by automating the labor-intensive task of report writing. While recent advancements have improved the quality and coherence of generated reports, ensuring their factual correctness remains a critical challenge. Although generative medical Vision Large Language Models (VLLMs) have been proposed to address this issue, these models are prone to hallucinations and can produce inaccurate diagnostic information. To address these concerns, we introduce a novel Semantic Consistency-Based Uncertainty Quantification framework that provides both report-level and sentence-level uncertainties. Unlike existing approaches, our method does not require modifications to the underlying model or access to its inner state, such as output token logits, thus serving as a plug-and-play module that can be seamlessly integrated with state-of-the-art models. Extensive experiments demonstrate the efficacy of our method in detecting hallucinations and enhancing the factual accuracy of automatically generated radiology reports. By abstaining from high-uncertainty reports, our approach improves factuality scores by $10$%, achieved by rejecting $20$% of reports using the Radialog model on the MIMIC-CXR dataset. Furthermore, sentence-level uncertainty flags the lowest-precision sentence in each report with an $82.9$% success rate.
- Abstract(参考訳): 放射線学報告生成 (RRG) は, 労働集約的な報告書作成作業を自動化することで, 放射線科医を支援する大きな可能性を示している。
最近の進歩は、生成されたレポートの品質と一貫性を改善してきたが、事実の正確性を保証することは、依然として重要な課題である。
生成医療用視覚大言語モデル(VLLM)はこの問題に対処するために提案されているが、これらのモデルは幻覚を起こす傾向があり、不正確な診断情報を生成することができる。
これらの問題に対処するため、我々は、レポートレベルと文レベルの不確実性の両方を提供する、セマンティック一貫性に基づく不確実性定量化フレームワークを新たに導入する。
既存の手法とは異なり,本手法では,出力トークンのロジットなどの内部状態の変更や,内部状態へのアクセスを必要とせず,プラグイン・アンド・プレイモジュールとして機能し,最先端モデルとシームレスに統合できる。
本手法による幻覚の検出と,自動生成放射線診断の精度向上効果について検討した。
MIMIC-CXRデータセット上のRadialogモデルを用いて20ドル以上のレポートを拒絶することにより,本手法は事実性スコアを10ドル%改善する。
さらに、文レベルの不確実性は、各レポートで最低精度の文を82.9ドル%の成功率でフラグ付けする。
関連論文リスト
- ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports [1.9106067578277455]
胸部X線レポート内の代表的エラーを生成するために,大規模言語モデルを活用する手法であるReXErrを紹介する。
我々は、人間とAIが生成したレポートでよくある誤りを捉えるエラーカテゴリを開発した。
本手法は, 臨床応用可能性を維持しつつ, 多様な誤差を注入する新しいサンプリング手法を用いている。
論文 参考訳(メタデータ) (2024-09-17T01:42:39Z) - ICON: Improving Inter-Report Consistency in Radiology Report Generation via Lesion-aware Mixup Augmentation [14.479606737135045]
我々は,放射線学レポート生成のレポート間一貫性を改善するICONを提案する。
まず,入力画像から病変を抽出し,その特徴について検討する。
次に, 意味論的に等価な病変の表現が同一の属性と一致することを確実にするために, 病変認識ミックスアップ手法を導入する。
論文 参考訳(メタデータ) (2024-02-20T09:13:15Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
医療報告生成(MRG)は、コンピュータ支援診断と治療指導に不可欠である。
視覚的および言語的バイアスによって引き起こされる画像テキストデータ内の素早い相関のため、病変領域を確実に記述した正確なレポートを生成することは困難である。
本稿では,視覚分解モジュール (VDM) と言語分解モジュール (LDM) からなるMRGのための新しい視覚言語因果干渉 (VLCI) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-16T07:23:55Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
放射線画像から記述テキストを自動的に生成することを目的とした放射線学レポート生成。
典型的な設定は、エンコーダとデコーダのモデルを、クロスエントロピー損失のあるイメージレポートペアでトレーニングする。
本稿では,医療報告生成におけるコントラスト損失の弱化について提案する。
論文 参考訳(メタデータ) (2021-09-25T00:06:23Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Confidence-Guided Radiology Report Generation [24.714303916431078]
本稿では,放射線学レポート作成作業における視覚的不確実性とテキスト的不確実性の両方を定量化する手法を提案する。
実験結果から, モデル不確実性評価と推定のための提案手法が, ラジオロジーレポート生成の信頼性向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-06-21T07:02:12Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Improving Factual Completeness and Consistency of Image-to-Text
Radiology Report Generation [26.846912996765447]
我々は,事実的完全かつ一貫した放射線学報告の創出を促進するために,新たな2つの簡単な報奨制度を導入する。
私たちのシステムでは,ベースラインよりも現実的に完全で一貫性のある世代が生まれることが示されています。
論文 参考訳(メタデータ) (2020-10-20T05:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。