Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
- URL: http://arxiv.org/abs/2412.04628v4
- Date: Thu, 19 Jun 2025 11:00:28 GMT
- Title: Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
- Authors: Taneesh Gupta, Rahul Madhavan, Xuchao Zhang, Nagarajan Natarajan, Chetan Bansal, Saravan Rajmohan,
- Abstract summary: We propose $textbfMulti-Preference Optimization (MPO) to optimize over entire sets of responses.<n>MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward.<n>We theoretically prove that MPO reduces alignment bias at a rate of $mathcalOleft(frac1sqrtnright)$ with respect to the number of responses per query.
- Score: 17.243429150450886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct Preference Optimization (DPO) has become a popular approach for aligning language models using pairwise preferences. However, in practical post-training pipelines, on-policy generation typically yields multiple candidate responses per prompt, which are scored by a reward model to guide learning. In this setting, we propose $\textbf{Multi-Preference Optimization (MPO)}$, a generalization of DPO that optimizes over entire sets of responses by extending the Bradley-Terry model to groupwise comparisons between chosen and rejected sets. To further enhance learning, MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward, effectively inducing a self-paced curriculum. We theoretically prove that MPO reduces alignment bias at a rate of $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ with respect to the number of responses per query. Empirically, MPO achieves state-of-the-art performance on the UltraFeedback benchmark and yields up to $\sim 17.5\%$ improvement over the state-of-the-art baseline in length-controlled win rate on AlpacaEval2, establishing a new baseline for preference-based alignment
Related papers
- In-context Ranking Preference Optimization [48.36442791241395]
We propose an In-context Ranking Preference Optimization (IRPO) framework to optimize large language models (LLMs) based on ranking lists constructed during inference.
We show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.
arXiv Detail & Related papers (2025-04-21T23:06:12Z) - AMPO: Active Multi-Preference Optimization for Self-play Preference Selection [16.230186347702737]
Multi-preference optimization enriches language-model alignment beyond pairwise preferences by contrasting entire sets of helpful and undesired responses.<n>We propose $textitActive Multi-Preference Optimization$ (AMPO), a novel approach that combines on-policy generation, a multi-preference group-contrastive loss, and active subset selection.<n>AMPO achieves state-of-the-art results on $textitAlpacaEval$ using Llama 8B and Mistral Mist 7B.
arXiv Detail & Related papers (2025-02-25T15:29:51Z) - REFA: Reference Free Alignment for multi-preference optimization [16.230186347702737]
We introduce $textbfREFA$, a family of reference-free alignment methods.<n>Our approach integrates deviation-based weighting to emphasize high-quality responses.<n> REFA achieves a new $textbf26.6%$ Length-Controlled Win Rate (LC-WR) and $textbf24.2%$ Win Rate (WR)
arXiv Detail & Related papers (2024-12-20T22:25:23Z) - Cal-DPO: Calibrated Direct Preference Optimization for Language Model Alignment [19.02679077706812]
We study the problem of aligning large language models with human preference data.
We propose direct preference optimization (Cal-DPO), a simple yet effective algorithm.
The results of our experiments on a variety of standard benchmarks show that Cal-DPO remarkably improves off-the-shelf methods.
arXiv Detail & Related papers (2024-12-19T04:31:56Z) - $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [54.94545757220999]
$f$-PO is a novel framework that generalizes and extends existing approaches.<n>We conduct experiments on state-of-the-art language models using benchmark datasets.
arXiv Detail & Related papers (2024-10-29T02:11:45Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees [14.84379332031731]
We introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree.<n>TPO formulates the language model alignment as a Preference List Ranking problem.<n>The experimental results indicate that TPO consistently outperforms DPO across five public large language models on four datasets.
arXiv Detail & Related papers (2024-10-10T22:22:05Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - The Crucial Role of Samplers in Online Direct Preference Optimization [36.68862142959827]
We provide a rigorous analysis of DPO's convergence rates with different sampling strategies under the exact gradient setting.
Our proposed online sampler achieves $textbfquadratic$ convergence, while uniform sampling achieves $textbflinear$ convergence.
For example, it outperforms vanilla DPO by over $7.4$% on Safe-RLHF dataset.
arXiv Detail & Related papers (2024-09-29T07:53:50Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
We propose a new axis based on eliciting preferences jointly over instruction-response pairs.
Joint preferences over instruction and response pairs can significantly enhance the alignment of large language models.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
Adversarial Policy Optimization (AdvPO) is a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback.
In this paper, we introduce a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model.
arXiv Detail & Related papers (2024-03-08T09:20:12Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z) - You May Not Need Ratio Clipping in PPO [117.03368180633463]
Proximal Policy Optimization (PPO) methods learn a policy by iteratively performing multiple mini-batch optimization epochs of a surrogate objective with one set of sampled data.
Ratio clipping PPO is a popular variant that clips the probability ratios between the target policy and the policy used to collect samples.
We show in this paper that such ratio clipping may not be a good option as it can fail to effectively bound the ratios.
We show that ESPO can be easily scaled up to distributed training with many workers, delivering strong performance as well.
arXiv Detail & Related papers (2022-01-31T20:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.