論文の概要: Disentangled Representation Learning for Causal Inference with Instruments
- arxiv url: http://arxiv.org/abs/2412.04641v1
- Date: Thu, 05 Dec 2024 22:18:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:58:03.884166
- Title: Disentangled Representation Learning for Causal Inference with Instruments
- Title(参考訳): 楽器による因果推論のためのアンタングル表現学習
- Authors: Debo Cheng, Jiuyong Li, Lin Liu, Ziqi Xu, Weijia Zhang, Jixue Liu, Thuc Duy Le,
- Abstract要約: 既存のIVに基づく推定器は、システム内に2つ以上のIVが存在するなど、既知のIVまたは他の強い仮定を必要とする。
本稿では,変数がプロキシであるかを知らずに,システム内にIVプロキシが存在すると仮定する緩和要求について考察する。
本稿では,変分オートエンコーダ(VAE)を用いた不整合表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 31.67220687652054
- License:
- Abstract: Latent confounders are a fundamental challenge for inferring causal effects from observational data. The instrumental variable (IV) approach is a practical way to address this challenge. Existing IV based estimators need a known IV or other strong assumptions, such as the existence of two or more IVs in the system, which limits the application of the IV approach. In this paper, we consider a relaxed requirement, which assumes there is an IV proxy in the system without knowing which variable is the proxy. We propose a Variational AutoEncoder (VAE) based disentangled representation learning method to learn an IV representation from a dataset with latent confounders and then utilise the IV representation to obtain an unbiased estimation of the causal effect from the data. Extensive experiments on synthetic and real-world data have demonstrated that the proposed algorithm outperforms the existing IV based estimators and VAE-based estimators.
- Abstract(参考訳): 潜在的共同設立者は、観測データから因果関係を推測する上で、根本的な課題である。
楽器変数(IV)アプローチはこの課題に対処するための実践的な方法である。
既存のIVに基づく推定器は、IVアプローチの適用を制限する2つ以上のIVの存在のような、既知のIVまたは他の強い仮定を必要とする。
本稿では,変数がプロキシであるかを知らずに,システム内にIVプロキシが存在すると仮定する緩和要求について考察する。
本稿では,VAEに基づく不整合表現学習手法を提案し,そのデータから因果効果の偏りのない推定値を得るために,潜在共同創設者とデータセットからIV表現を学習する。
合成および実世界のデータに対する大規模な実験により、提案アルゴリズムは既存のIVベースの推定器とVAEベースの推定器より優れていることが示された。
関連論文リスト
- Optimality and Adaptivity of Deep Neural Features for Instrumental Variable Regression [57.40108516085593]
ディープ・フィーチャー・インスツルメンタル・変数(DFIV)回帰(Deep Feature instrumental variable)は、ディープ・ニューラルネットワークによって学習されたデータ適応的特徴を用いたIV回帰に対する非パラメトリックなアプローチである。
DFIVアルゴリズムは,目的構造関数がベソフ空間にある場合,最小最適学習率を実現する。
論文 参考訳(メタデータ) (2025-01-09T01:22:22Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
本稿では,データ導出情報によるデータ多様体の幾何を考慮した移動型IV推定器を提案する。
本手法のプラグイン・アンド・プレイ実装は,標準設定で関連する推定器と同等に動作する。
論文 参考訳(メタデータ) (2024-05-19T17:49:33Z) - Regularized DeepIV with Model Selection [72.17508967124081]
正規化DeepIV(RDIV)回帰は最小ノルムIV解に収束することができる。
我々の手法は現在の最先端の収束率と一致している。
論文 参考訳(メタデータ) (2024-03-07T05:38:56Z) - Learning Conditional Instrumental Variable Representation for Causal
Effect Estimation [20.546911588972737]
因果効果推定のための条件セットとCIVの表現を学習・拡張するための新しい手法DVAE.CIVを提案する。
論文 参考訳(メタデータ) (2023-06-21T02:27:15Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - Instrumental Variables in Causal Inference and Machine Learning: A
Survey [26.678154268037595]
因果推論(英: Causal inference)とは、データに基づく変数間の因果関係に関する結論を引き出すために仮定を用いる過程である。
因果推論と機械学習の両分野における増大する文献は、計測変数(IV)の使用を提案する
本論文は、因果推論と機械学習の両方において、IV法とその応用を体系的かつ包括的に導入し、議論する最初の試みである。
論文 参考訳(メタデータ) (2022-12-12T08:59:04Z) - Causal Inference with Conditional Instruments using Deep Generative
Models [21.771832598942677]
標準IVは、処理変数と関係があり、システム内の他のすべての変数とは独立していると期待されている。
変数を変数の集合に条件付けするための条件付きIV(CIV)法が提案されている。
平均因果効果推定のために,CIVの表現とその条件セットを,潜伏した共同設立者とのデータから学習することを提案する。
論文 参考訳(メタデータ) (2022-11-29T14:31:54Z) - Discovering Ancestral Instrumental Variables for Causal Inference from
Observational Data [0.0]
測定変数(IV)は、観察データから興味の結果に対する治療の因果効果を推定するための強力なアプローチである。
既存のIV法は、IVが選択され、ドメイン知識で正当化されることを要求する。
本稿では,データから有効なIVを発見するためのデータ駆動アルゴリズムについて,軽度な仮定で検討・設計する。
論文 参考訳(メタデータ) (2022-06-04T07:48:13Z) - Ancestral Instrument Method for Causal Inference without Complete
Knowledge [0.0]
観測データから因果効果を推定する主な障害は、観測不能な共起である。
条件IVは、観測変数の集合を条件付けすることで標準IVの要求を緩和するために提案されている。
本研究では,祖先IVと観測データを用いた因果効果推定アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-01-11T07:02:16Z) - Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning [107.70165026669308]
オフライン強化学習(RL)では、事前収集された観測データのみから最適なポリシーが学習される。
遷移力学が加法的非線形汎関数形式を持つようなマルコフ決定過程について検討する。
そこで本稿では,条件付きモーメント制限の原始的2次元再構成に基づく,証明可能なIVVIアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-19T13:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。