Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting
- URL: http://arxiv.org/abs/2412.04673v1
- Date: Thu, 05 Dec 2024 23:54:06 GMT
- Title: Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting
- Authors: Haleh Damirchi, Ali Etemad, Michael Greenspan,
- Abstract summary: We propose a model that uses a reconstructor alongside a conditional variational autoencoder-based trajectory forecasting module.<n>This module generates pseudo-trajectories, which we use as augmentations throughout the training process.<n>To further guide the model towards social awareness, we propose a novel social loss that aids in forecasting of more stable trajectories.
- Score: 21.369444387333218
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pedestrian trajectory prediction remains a challenge for autonomous systems, particularly due to the intricate dynamics of social interactions. Accurate forecasting requires a comprehensive understanding not only of each pedestrian's previous trajectory but also of their interaction with the surrounding environment, an important part of which are other pedestrians moving dynamically in the scene. To learn effective socially-informed representations, we propose a model that uses a reconstructor alongside a conditional variational autoencoder-based trajectory forecasting module. This module generates pseudo-trajectories, which we use as augmentations throughout the training process. To further guide the model towards social awareness, we propose a novel social loss that aids in forecasting of more stable trajectories. We validate our approach through extensive experiments, demonstrating strong performances in comparison to state of-the-art methods on the ETH/UCY and SDD benchmarks.
Related papers
- InSyn: Modeling Complex Interactions for Pedestrian Trajectory Prediction [4.993499119395447]
InSyn is a novel Transformer-based model that captures diverse interaction patterns.<n>SSOS is a training strategy designed to alleviate the common issue of initial-step divergence in numerical time-series prediction.
arXiv Detail & Related papers (2025-07-16T12:23:04Z) - Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles.
Recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians.
This paper proposes a graph transformer structure to improve prediction performance.
arXiv Detail & Related papers (2024-01-10T01:50:29Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Distribution-aware Goal Prediction and Conformant Model-based Planning
for Safe Autonomous Driving [16.654299927694716]
We reformulate the learning-to-drive task as obstacle-aware perception and grounding, distribution-aware goal prediction, and model-based planning.
Under the CARLA simulator, we report state-of-the-art results on the CARNOVEL benchmark.
arXiv Detail & Related papers (2022-12-16T21:51:51Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
Human trajectory forecasting is a key component of autonomous vehicles, social-aware robots and video-surveillance applications.
We propose a lightweight attention-based recurrent backbone that acts solely on past observed positions.
We employ a common goal module, based on a U-Net architecture, which additionally extracts semantic information to predict scene-compliant destinations.
arXiv Detail & Related papers (2022-04-25T11:12:37Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.