InSyn: Modeling Complex Interactions for Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2507.13397v1
- Date: Wed, 16 Jul 2025 12:23:04 GMT
- Title: InSyn: Modeling Complex Interactions for Pedestrian Trajectory Prediction
- Authors: Kaiyuan Zhai, Juan Chen, Chao Wang, Zeyi Xu,
- Abstract summary: InSyn is a novel Transformer-based model that captures diverse interaction patterns.<n>SSOS is a training strategy designed to alleviate the common issue of initial-step divergence in numerical time-series prediction.
- Score: 4.993499119395447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate pedestrian trajectory prediction is crucial for intelligent applications, yet it remains highly challenging due to the complexity of interactions among pedestrians. Previous methods have primarily relied on relative positions to model pedestrian interactions; however, they tend to overlook specific interaction patterns such as paired walking or conflicting behaviors, limiting the prediction accuracy in crowded scenarios. To address this issue, we propose InSyn (Interaction-Synchronization Network), a novel Transformer-based model that explicitly captures diverse interaction patterns (e.g., walking in sync or conflicting) while effectively modeling direction-sensitive social behaviors. Additionally, we introduce a training strategy termed Seq-Start of Seq (SSOS), designed to alleviate the common issue of initial-step divergence in numerical time-series prediction. Experiments on the ETH and UCY datasets demonstrate that our model outperforms recent baselines significantly, especially in high-density scenarios. Furthermore, the SSOS strategy proves effective in improving sequential prediction performance, reducing the initial-step prediction error by approximately 6.58%.
Related papers
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting [21.369444387333218]
We propose a model that uses a reconstructor alongside a conditional variational autoencoder-based trajectory forecasting module.<n>This module generates pseudo-trajectories, which we use as augmentations throughout the training process.<n>To further guide the model towards social awareness, we propose a novel social loss that aids in forecasting of more stable trajectories.
arXiv Detail & Related papers (2024-12-05T23:54:06Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
Human forecasting in crowds presents the challenges of modelling social interactions and outputting collision-free multimodal distribution.
We introduce SGANv2, an improved safety-compliant SGAN architecture equipped with motion-temporal interaction modelling and a transformer-based discriminator design.
arXiv Detail & Related papers (2022-09-25T15:18:56Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Social-DualCVAE: Multimodal Trajectory Forecasting Based on Social
Interactions Pattern Aware and Dual Conditional Variational Auto-Encoder [14.05141917351931]
We present a conditional variational auto-encoder (Social-DualCVAE) for multi-modal trajectory forecasting.
It is based on a generative model conditioned not only on the past trajectories but also the unsupervised classification of interaction patterns.
The proposed model is evaluated on widely used trajectory benchmarks and outperforms the prior state-of-the-art methods.
arXiv Detail & Related papers (2022-02-08T16:04:47Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
We propose a novel CNN-based spatial-temporal graph framework GraphCNT to support more efficient and accurate trajectory predictions.
In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window.
Our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
arXiv Detail & Related papers (2020-03-16T12:56:12Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.