Natural Probability
- URL: http://arxiv.org/abs/2412.04689v1
- Date: Fri, 06 Dec 2024 01:04:57 GMT
- Title: Natural Probability
- Authors: Brett Parker,
- Abstract summary: This paper sketches a new physical theory of probability based on an attempt to model classical information within a purely quantum system.<n>We model classical information using a version of Zurek's theory of Quantum Darwinism, with emphasis on quantum information encoded using projection operators localised in spacetime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How should we model an observer within quantum mechanics or quantum field theory? How can classical physics emerge from a quantum model, and why should classical probability be useful? How can we model a selective measurement entirely within a closed quantum system? This paper sketches a new physical theory of probability based on an attempt to model classical information within a purely quantum system. We model classical information using a version of Zurek's theory of Quantum Darwinism, with emphasis on quantum information encoded using projection operators localised in spacetime. This version of Quantum Darwinism is compatible with quantum field theory, and does not require any artificial division of a quantum system into subsystems. The main innovation is our attempt to provide a physical explanation of probability. Decoherence is the physical mechanism behind Quantum Darwinism or the `branching of quantum worlds'. Assuming a type of perfect decoherence we construct a conventional probabilistic model for classical information. This, however, is not our theory of natural probability, and does not quite demonstrate the validity of Bayesian reasoning. Instead, our theory of natural probability arises from careful consideration of errors in decoherence: roughly speaking, we don't observe low probability events because they are swamped by quantum noise.
Related papers
- Quantum probability for statisticians; some new ideas [0.0]
It is argued from several points of view that quantum probabilities might play a role in statistical settings.
New approaches toward quantum foundations have postulates that appear to be equally valid in macroscopic settings.
A list of ideas for possible statistical applications of quantum probabilities is provided and discussed.
arXiv Detail & Related papers (2025-03-04T14:18:49Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - The probabilistic world II : Quantum mechanics from classical statistics [0.0]
A simple neuromorphic computer based on neurons in an active or quiet state within a probabilistic environment can learn the unitary transformations of an entangled two-qubit system.
Our explicit constructions constitute a proof that no-go theorems for the embedding of quantum mechanics in classical statistics are circumvented.
arXiv Detail & Related papers (2024-08-09T14:02:55Z) - The Hidden Ontological Variable in Quantum Harmonic Oscillators [0.0]
The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system.
One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system.
arXiv Detail & Related papers (2024-07-25T16:05:18Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - About the description of physical reality of Bell's experiment [91.3755431537592]
A hidden variables model complying with the simplest form of Local Realism was recently introduced.
It reproduces Quantum Mechanics' predictions for an even ideally perfect Bell's experiment.
A new type of quantum computer does not exist yet, not even in theory.
arXiv Detail & Related papers (2021-09-06T15:55:13Z) - Quantum fermions from classical bits [0.0]
A simple cellular automaton is shown to be equivalent to a relativistic fermionic quantum field theory with interactions.
The automaton acts deterministically on bit configurations.
arXiv Detail & Related papers (2021-06-29T15:47:40Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Quantum Go Machine [15.33065067850941]
We experimentally demonstrate a quantum version of Go using correlated photon pairs entangled in polarization degree of freedom.
Some quantum resources, like coherence or entanglement, can also be encoded to represent the state of quantum stones.
Our results establish a paradigm of inventing new games with quantum-enabled difficulties.
arXiv Detail & Related papers (2020-07-23T18:00:01Z) - Characterization of the probabilistic models that can be embedded in
quantum theory [0.0]
We show that only classical and standard quantum theory with superselection rules can arise from a physical decoherence map.
Our results have significant consequences for some experimental tests of quantum theory, by clarifying how they could (or could not) falsify it.
arXiv Detail & Related papers (2020-04-13T18:09:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.