An Experimental Evaluation of Imputation Models for Spatial-Temporal Traffic Data
- URL: http://arxiv.org/abs/2412.04733v1
- Date: Fri, 06 Dec 2024 02:47:54 GMT
- Title: An Experimental Evaluation of Imputation Models for Spatial-Temporal Traffic Data
- Authors: Shengnan Guo, Tonglong Wei, Yiheng Huang, Miaomiao Zhao, Ran Chen, Yan Lin, Youfang Lin, Huaiyu Wan,
- Abstract summary: This work aims to provide a holistic understanding of traffic data imputation research and serve as a practical guideline.<n>We first propose practice-oriented for missing patterns and imputation models, systematically identifying all possible forms of real-world traffic data loss.<n> Furthermore, we introduce a unified benchmarking pipeline to comprehensively evaluate 10 representative models across various missing patterns and rates.
- Score: 20.294382826251994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic data imputation is a critical preprocessing step in intelligent transportation systems, enabling advanced transportation services. Despite significant advancements in this field, selecting the most suitable model for practical applications remains challenging due to three key issues: 1) incomprehensive consideration of missing patterns that describe how data loss along spatial and temporal dimensions, 2) the lack of test on standardized datasets, and 3) insufficient evaluations. To this end, we first propose practice-oriented taxonomies for missing patterns and imputation models, systematically identifying all possible forms of real-world traffic data loss and analyzing the characteristics of existing models. Furthermore, we introduce a unified benchmarking pipeline to comprehensively evaluate 10 representative models across various missing patterns and rates. This work aims to provide a holistic understanding of traffic data imputation research and serve as a practical guideline.
Related papers
- Modeling IoT Traffic Patterns: Insights from a Statistical Analysis of an MTC Dataset [1.2289361708127877]
Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives.
Effective IoT traffic management requires modeling and predicting intrincate machine-type communication (MTC) dynamics.
We perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov-Smirnov, Anderson-Darling, chi-squared, and root mean square error.
arXiv Detail & Related papers (2024-09-03T14:24:18Z) - A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.
We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.
After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
We study the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods.
Our analysis uncovers that LoRA fine-tuning consistently exhibits significantly better OOD generalization performance than full fine-tuning across various scenarios.
arXiv Detail & Related papers (2022-10-10T16:07:24Z) - A Latent Feature Analysis-based Approach for Spatio-Temporal Traffic
Data Recovery [3.84562917529518]
Missing is an inevitable and common problem in data-driven intelligent (ITS)
This paper proposes an Aim-temporal traffic data completion method based on hidden feature analysis.
The results show that the model can accurately estimate the continuous missing data.
arXiv Detail & Related papers (2022-08-16T13:21:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic
Data Imputation with Complex Missing Patterns [3.9318191265352196]
We propose a novel deep learning framework called Dynamic Spatio Graph Contemporal Networks (DSTG) to impute missing traffic data.
We introduce a graph structure estimation technique to model the dynamic spatial dependencies real-time traffic information and road network structure.
Our proposed model outperforms existing deep learning models in all kinds of missing scenarios and the graph structure estimation technique contributes to the model performance.
arXiv Detail & Related papers (2021-09-17T05:47:17Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
arXiv Detail & Related papers (2021-04-03T20:57:57Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.