論文の概要: Neuro-Symbolic Data Generation for Math Reasoning
- arxiv url: http://arxiv.org/abs/2412.04857v1
- Date: Fri, 06 Dec 2024 08:49:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:30.903594
- Title: Neuro-Symbolic Data Generation for Math Reasoning
- Title(参考訳): 数学推論のためのニューロシンボリックデータ生成
- Authors: Zenan Li, Zhi Zhou, Yuan Yao, Yu-Feng Li, Chun Cao, Fan Yang, Xian Zhang, Xiaoxing Ma,
- Abstract要約: 高品質な教師付き数学的データセットを自動生成する手法を開発した。
本手法は,既存の数学問題を慎重に変更し,新たに生成した問題の多様性と妥当性を両立させる。
実験により,提案手法により生成したデータの品質を実証し,LLaMA-2 と Mistral が最先端のデータを上回ることを示した。
- 参考スコア(独自算出の注目度): 47.00099724151703
- License:
- Abstract: A critical question about Large Language Models (LLMs) is whether their apparent deficiency in mathematical reasoning is inherent, or merely a result of insufficient exposure to high-quality mathematical data. To explore this, we developed an automated method for generating high-quality, supervised mathematical datasets. The method carefully mutates existing math problems, ensuring both diversity and validity of the newly generated problems. This is achieved by a neuro-symbolic data generation framework combining the intuitive informalization strengths of LLMs, and the precise symbolic reasoning of math solvers along with projected Markov chain Monte Carlo sampling in the highly-irregular symbolic space. Empirical experiments demonstrate the high quality of data generated by the proposed method, and that the LLMs, specifically LLaMA-2 and Mistral, when realigned with the generated data, surpass their state-of-the-art counterparts.
- Abstract(参考訳): LLM(Large Language Models)に関する重要な疑問は、それらの数学的推論における明らかな欠如が固有のものなのか、それとも単に高品質な数学的データへの露出不足の結果なのかである。
そこで我々は,高品質な教師付き数学的データセットを自動生成する手法を開発した。
提案手法は,既存の数学問題を慎重に変更し,新たに生成した問題の多様性と妥当性を両立させる。
これは、LLMの直感的な非公式化強度と、マルコフ連鎖モンテカルロの高次不規則な記号空間における標本化とともに、数学解の正確な記号推論を組み合わせた、ニューロシンボリックデータ生成フレームワークによって達成される。
実験により,提案手法により生成されたデータの品質が向上し,LLaMA-2 と Mistral が得られたデータに適合すると,LLM が最先端のデータを上回ることを示す。
関連論文リスト
- Improving Mathematical Reasoning Capabilities of Small Language Models via Feedback-Driven Distillation [15.542737858152053]
大規模言語モデル(LLM)は例外的な推論能力を示し、様々なタスクで最先端のパフォーマンスを達成する。
有望な解決策は知識蒸留であり、LLMがSmall Language Models (SLM)に推論機能を移行し、低リソースデバイスへのより広範なデプロイを可能にする。
本研究では,SLMの数学的推論能力を高めるために,フィードバック駆動蒸留(FDD)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-22T03:12:39Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
エラー検出におけるMLLMの能力を評価するために設計された最初のベンチマークであるErrorRadarを紹介する。
ErrorRadarはエラーステップ識別とエラー分類という2つのサブタスクを評価している。
2500の高品質なマルチモーダルK-12数学問題で構成され、実世界の学生相互作用から収集される。
GPT-4oの優れた性能は、まだ人間の評価に約10%遅れているため、大きな課題が残っている。
論文 参考訳(メタデータ) (2024-10-06T14:59:09Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Exploring Equation as a Better Intermediate Meaning Representation for
Numerical Reasoning [53.2491163874712]
我々は数値推論の問題を解くために方程式をIMRとして利用する。
本稿では、方程式(ブリッジ)の生成を分解したブースティング数値推論法を提案する。
本手法では,GSM8K,SVAMP,Algebraデータセットの2.2%,0.9%,1.7%の性能向上を実現している。
論文 参考訳(メタデータ) (2023-08-21T09:35:33Z) - Generating Mathematical Derivations with Large Language Models [2.363388546004777]
シンボリックエンジンを利用して、スケールでの方程式の導出を生成する。
目的方程式を前提から導出する際の大規模言語モデルの能力について検討する。
論文 参考訳(メタデータ) (2023-07-19T14:13:02Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
低ランクモデルの計算混合を学習する問題について検討する。
ほぼ最適サンプルを用いて未知の行列を復元することが保証されるアルゴリズムを開発する。
さらに,提案アルゴリズムはランダムノイズに対して確実に安定である。
論文 参考訳(メタデータ) (2020-09-23T17:53:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。