ETLNet: An Efficient TCN-BiLSTM Network for Road Anomaly Detection Using Smartphone Sensors
- URL: http://arxiv.org/abs/2412.04990v1
- Date: Fri, 06 Dec 2024 12:27:07 GMT
- Title: ETLNet: An Efficient TCN-BiLSTM Network for Road Anomaly Detection Using Smartphone Sensors
- Authors: Mohd Faiz Ansari, Rakshit Sandilya, Mohammed Javed, David Doermann,
- Abstract summary: Road anomalies can be defined as irregularities on the road surface or in the surface itself.
Speed bumps are intentionally placed for safety but are dangerous due to their non-standard shape, size, and lack of proper markings.
Potholes are unintentional and can also cause severe damage.
- Score: 2.603510582351217
- License:
- Abstract: Road anomalies can be defined as irregularities on the road surface or in the surface itself. Some may be intentional (such as speedbumps), accidental (such as materials falling off a truck), or the result of roads' excessive use or low or no maintenance, such as potholes. Despite their varying origins, these irregularities often harm vehicles substantially. Speed bumps are intentionally placed for safety but are dangerous due to their non-standard shape, size, and lack of proper markings. Potholes are unintentional and can also cause severe damage. To address the detection of these anomalies, we need an automated road monitoring system. Today, various systems exist that use visual information to track these anomalies. Still, due to poor lighting conditions and improper or missing markings, they may go undetected and have severe consequences for public transport, automated vehicles, etc. In this paper, the Enhanced Temporal-BiLSTM Network (ETLNet) is introduced as a novel approach that integrates two Temporal Convolutional Network (TCN) layers with a Bidirectional Long Short-Term Memory (BiLSTM) layer. This combination is tailored to detect anomalies effectively irrespective of lighting conditions, as it depends not on visuals but smartphone inertial sensor data. Our methodology employs accelerometer and gyroscope sensors, typically in smartphones, to gather data on road conditions. Empirical evaluations demonstrate that the ETLNet model maintains an F1-score for detecting speed bumps of 99.3%. The ETLNet model's robustness and efficiency significantly advance automated road surface monitoring technologies.
Related papers
- Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.
We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.
Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
This study uses vehicle trajectory data and traffic incident data on I-10, one of the most crash-prone highways in Louisiana.
Various machine learning algorithms are used to detect a trajectory that is likely to face an incident in the downstream road section.
Results suggest that the Random Forest model achieves the best performance for predicting an incident with reasonable recall value and discrimination capability.
arXiv Detail & Related papers (2024-08-15T00:51:48Z) - VegaEdge: Edge AI Confluence Anomaly Detection for Real-Time Highway
IoT-Applications [2.812395851874055]
Vehicle anomaly detection plays a vital role in highway safety applications such as accident prevention, rapid response, traffic flow optimization, and work zone safety.
We introduce a lightweight approach to vehicle anomaly detection by utilizing the power of trajectory prediction.
We present VegaEdge - a sophisticated AI confluence designed for real-time security and surveillance applications in modern highway settings.
arXiv Detail & Related papers (2023-11-14T03:19:55Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Non-Compression Auto-Encoder for Detecting Road Surface Abnormality via
Vehicle Driving Noise [0.0]
Road accident can be triggered by wet road because it decreases skid resistance. To prevent the road accident, detecting road surface abnomality can be helpful.
We propose the deep learning based cost-effective real-time anomaly detection architecture, naming with non-compression auto-encoder (NCAE)
arXiv Detail & Related papers (2021-03-24T05:13:50Z) - Towards Anomaly Detection in Dashcam Videos [9.558392439655012]
We propose to apply data-driven anomaly detection ideas from deep learning to dashcam videos.
We present a large and diverse dataset of truck dashcam videos, namely RetroTrucks.
We apply: (i) one-class classification loss and (ii) reconstruction-based loss, for anomaly detection on RetroTrucks.
arXiv Detail & Related papers (2020-04-11T00:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.