Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data
- URL: http://arxiv.org/abs/2408.16773v1
- Date: Thu, 15 Aug 2024 00:51:48 GMT
- Title: Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data
- Authors: Sudipta Roy, Samiul Hasan,
- Abstract summary: This study uses vehicle trajectory data and traffic incident data on I-10, one of the most crash-prone highways in Louisiana.
Various machine learning algorithms are used to detect a trajectory that is likely to face an incident in the downstream road section.
Results suggest that the Random Forest model achieves the best performance for predicting an incident with reasonable recall value and discrimination capability.
- Score: 3.061662434597097
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A significant number of traffic crashes are secondary crashes that occur because of an earlier incident on the road. Thus, early detection of traffic incidents is crucial for road users from safety perspectives with a potential to reduce the risk of secondary crashes. The wide availability of GPS devices now-a-days gives an opportunity of tracking and recording vehicle trajectories. The objective of this study is to use vehicle trajectory data for advance real-time detection of traffic incidents on highways using machine learning-based algorithms. The study uses three days of unevenly sequenced vehicle trajectory data and traffic incident data on I-10, one of the most crash-prone highways in Louisiana. Vehicle trajectories are converted to trajectories based on virtual detector locations to maintain spatial uniformity as well as to generate historical traffic data for machine learning algorithms. Trips matched with traffic incidents on the way are separated and along with other trips with similar spatial attributes are used to build a database for modeling. Multiple machine learning algorithms such as Logistic Regression, Random Forest, Extreme Gradient Boost, and Artificial Neural Network models are used to detect a trajectory that is likely to face an incident in the downstream road section. Results suggest that the Random Forest model achieves the best performance for predicting an incident with reasonable recall value and discrimination capability.
Related papers
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
This work focuses on detecting abnormal driving behaviors from trajectories produced by highway video surveillance systems.
We propose an autoencoder with a Recurrent Graph Attention Network that can capture the highway driving behaviors contextualized on the surrounding cars.
Our model is scalable to large freeways with thousands of cars.
arXiv Detail & Related papers (2023-04-23T01:32:47Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Driving Safety Prediction and Safe Route Mapping Using In-vehicle and
Roadside Data [3.8103848718367597]
The Safe Route Mapping (SRM) model is extended to consider driver behaviors when making predictions.
An Android App is designed to gather drivers' information and upload it to a server.
dynamic traffic information is captured by a roadside camera and uploaded to the same server.
A LightGBM model is introduced to predict conflict indices for drivers in the next one or two seconds.
arXiv Detail & Related papers (2022-09-12T20:39:33Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection [0.3670422696827526]
This paper studies deep representation of loop detector data using Long-Short Term Memory (LSTM) network for automatic detection of freeway accidents.
Experiments on real accident and loop detector data collected from the Twin Cities Metro freeways of Minnesota demonstrate that deep representation of traffic flow data using LSTM network has the potential to detect freeway accidents in less than 18 minutes.
arXiv Detail & Related papers (2021-08-21T13:18:04Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Edge Computing for Real-Time Near-Crash Detection for Smart
Transportation Applications [29.550609157368466]
Traffic near-crash events serve as critical data sources for various smart transportation applications.
This paper leverages the power of edge computing to address these challenges by processing the video streams from existing dashcams onboard in a real-time manner.
It is among the first efforts in applying edge computing for real-time traffic video analytics and is expected to benefit multiple sub-fields in smart transportation research and applications.
arXiv Detail & Related papers (2020-08-02T19:39:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.