論文の概要: LoFi: Vision-Aided Label Generator for Wi-Fi Localization and Tracking
- arxiv url: http://arxiv.org/abs/2412.05074v2
- Date: Fri, 24 Jan 2025 02:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:54:26.856833
- Title: LoFi: Vision-Aided Label Generator for Wi-Fi Localization and Tracking
- Title(参考訳): LoFi:Wi-Fiのローカライゼーションとトラッキングのためのビジョン支援ラベルジェネレータ
- Authors: Zijian Zhao, Tingwei Chen, Fanyi Meng, Zhijie Cai, Hang Li, Xiaoyang Li, Guangxu Zhu,
- Abstract要約: LoFiは、Wi-Fiのローカライゼーションとトラッキングのための視覚支援ラベルジェネレータである。
ESP32-S3とWebカメラを用いてWi-Fiトラッキングとローカライゼーションデータセットをコンパイルした。
- 参考スコア(独自算出の注目度): 14.258434519487967
- License:
- Abstract: Data-driven Wi-Fi localization and tracking have shown great promise due to their lower reliance on specialized hardware compared to model-based methods. However, most existing data collection techniques provide only coarse-grained ground truth or a limited number of labeled points, significantly hindering the advancement of data-driven approaches. While systems like lidar can deliver precise ground truth, their high costs make them inaccessible to many users. To address these challenges, we propose LoFi, a vision-aided label generator for Wi-Fi localization and tracking. LoFi can generate ground truth position coordinates solely from 2D images, offering high precision, low cost, and ease of use. Utilizing our method, we have compiled a Wi-Fi tracking and localization dataset using the ESP32-S3 and a webcam, which will be open-sourced along with the code upon publication.
- Abstract(参考訳): データ駆動型Wi-Fiのローカライゼーションとトラッキングは、モデルベースの手法に比べて、特別なハードウェアへの依存度が低いため、非常に有望である。
しかし、既存のデータ収集技術のほとんどは、粗大な真実やラベル付きポイントの限られた数しか提供せず、データ駆動アプローチの進歩を著しく妨げている。
ライダーのようなシステムは、正確な真実を提供することができるが、その高いコストは、多くのユーザーにはアクセスできない。
これらの課題に対処するために、Wi-Fiのローカライゼーションとトラッキングのための視覚支援ラベルジェネレータであるLoFiを提案する。
LoFiは2D画像のみから地上の真理位置座標を生成でき、高精度で低コストで使いやすくなっている。
ESP32-S3とWebカメラを用いてWi-Fiトラッキングとローカライゼーションのデータセットをコンパイルし,そのコードを公開時に公開する。
関連論文リスト
- MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
本稿では,KITTI, nuScenes, データセット間でのSOTA(State-of-the-art)性能を実現する3Dマルチオブジェクトトラッキング手法であるMCTrackを紹介する。
論文 参考訳(メタデータ) (2024-09-23T11:26:01Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
統合センシング・通信(ISAC)は6G通信において重要であり、再構成可能なインテリジェントサーフェス(RIS)の急速な発展によって促進される
本稿では,複数の帯域にまたがるマルチモーダルCSIインジケータを協調的に活用し,クロスドメイン方式で追跡機能をモデル化するX2Trackフレームワークを提案する。
X2Trackの下では、トランスフォーマーニューラルネットワークと逆学習技術に基づいて、トラッキングエラーを最小限に抑える効率的なディープラーニングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-05-10T08:04:27Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - An Indoor Localization Dataset and Data Collection Framework with High
Precision Position Annotation [7.152408514130423]
この技術は、無線信号パラメータデータサンプルのアノテートに使用される拡張現実(AR)ベースの位置決めシステムを実装している。
我々は、ARマーカーで装飾された領域において、実用的で低コストで操作可能なカメラとBluetooth Low Energy(BLE)ビーコンの位置を追跡する。
以上の結果から,AR位置決めシステムの位置誤差を0.05m以下に抑えることができることがわかった。
論文 参考訳(メタデータ) (2022-09-06T07:41:11Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
SNN(End-to-end WiFi signal Neural Network)は、Wi-Fiのみのセンシングを可能にするために提案されている。
特に、3D畳み込みモジュールはWiFi信号の時間的連続性を探索することができ、特徴自己保持モジュールは支配的な特徴を明示的に維持することができる。
論文 参考訳(メタデータ) (2022-06-20T16:03:45Z) - Domain Adversarial Graph Convolutional Network Based on RSSI and
Crowdsensing for Indoor Localization [8.406788215294483]
少数のラベル付きサイトサーベイデータと大量のラベル付きクラウドセンシングWiFi指紋を用いてトレーニングできる新しいWiDAGCNモデルを提案する。
本システムは、複数の建物を含む公共の屋内ローカライゼーションデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-04-06T08:06:27Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:22:33Z) - Video-based Person Re-identification without Bells and Whistles [49.51670583977911]
ビデオベースの人物再識別(Re-ID)は、異なるカメラの下で歩行者を特定するために、ビデオトラッカーとトリミングされたビデオフレームをマッチングすることを目的としている。
従来の方法による不完全な検出と追跡の結果から, 収穫したトラックレットの空間的, 時間的不整合が生じている。
本稿では,深層学習に基づくトラックレットの検出と追跡を適用することで,これらの予期せぬノイズを効果的に低減できる簡易な再検出リンク(DL)モジュールを提案する。
論文 参考訳(メタデータ) (2021-05-22T10:17:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。