論文の概要: Effective Rank and the Staircase Phenomenon: New Insights into Neural Network Training Dynamics
- arxiv url: http://arxiv.org/abs/2412.05144v2
- Date: Thu, 09 Jan 2025 06:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:56:08.865466
- Title: Effective Rank and the Staircase Phenomenon: New Insights into Neural Network Training Dynamics
- Title(参考訳): 有効ランクと階段現象:ニューラルネットトレーニングダイナミクスの新しい視点
- Authors: Jiang Yang, Yuxiang Zhao, Quanhui Zhu,
- Abstract要約: ディープラーニングは高次元問題、特に低次元の特徴構造を持つ問題の解決において広く成功している。
ニューラルネットワークがどのようにそのような特徴を抽出するかをトレーニング中に理解することは、ディープラーニング理論における根本的な問題である。
本稿では,ニューラルネットワークの最後の隠れ層にあるニューロンを,重要な特徴を表す基本関数として解釈することで,新たな視点を提案する。
- 参考スコア(独自算出の注目度): 1.7056144431280509
- License:
- Abstract: In recent years, deep learning, powered by neural networks, has achieved widespread success in solving high-dimensional problems, particularly those with low-dimensional feature structures. This success stems from their ability to identify and learn low dimensional features tailored to the problems. Understanding how neural networks extract such features during training dynamics remains a fundamental question in deep learning theory. In this work, we propose a novel perspective by interpreting the neurons in the last hidden layer of a neural network as basis functions that represent essential features. To explore the linear independence of these basis functions throughout the deep learning dynamics, we introduce the concept of 'effective rank'. Our extensive numerical experiments reveal a notable phenomenon: the effective rank increases progressively during the learning process, exhibiting a staircase-like pattern, while the loss function concurrently decreases as the effective rank rises. We refer to this observation as the 'staircase phenomenon'. Specifically, for deep neural networks, we rigorously prove the negative correlation between the loss function and effective rank, demonstrating that the lower bound of the loss function decreases with increasing effective rank. Therefore, to achieve a rapid descent of the loss function, it is critical to promote the swift growth of effective rank. Ultimately, we evaluate existing advanced learning methodologies and find that these approaches can quickly achieve a higher effective rank, thereby avoiding redundant staircase processes and accelerating the rapid decline of the loss function.
- Abstract(参考訳): 近年、ニューラルネットワークを利用したディープラーニングは、特に低次元の特徴構造を持つような高次元問題の解法において広く成功している。
この成功は、問題に合わせた低次元の特徴を特定し、学習する能力に起因している。
ニューラルネットワークがどのようにそのような特徴を抽出するかをトレーニング中に理解することは、ディープラーニング理論における根本的な問題である。
本研究では,ニューラルネットワークの最後の隠れ層にあるニューロンを,重要な特徴を表す基本関数として解釈することで,新たな視点を提案する。
深層学習における基礎関数の線形独立性を探るため、「効果的なランク」の概念を紹介した。
学習中に有効ランクが徐々に増加し,階段のようなパターンが現れる一方で,有効ランクが上昇するにつれて損失関数は同時に減少する。
この現象を「階段現象」と呼ぶ。
具体的には、ディープニューラルネットワークにおいて、損失関数と有効ランクの負の相関を厳密に証明し、損失関数の下位境界が有効ランクの増大とともに減少することを示す。
したがって、損失関数の急速な降下を達成するためには、有効ランクの急激な成長を促進することが重要である。
最終的に、既存の先進的な学習手法を評価し、これらの手法が迅速に高い有効ランクを達成でき、これにより冗長な階段プロセスが回避され、損失関数の急速な減少が加速されることがわかった。
関連論文リスト
- Dynamical loss functions shape landscape topography and improve learning in artificial neural networks [0.9208007322096533]
クロスエントロピーと平均二乗誤差を動的損失関数に変換する方法を示す。
異なるサイズのネットワークに対する検証精度を大幅に向上させる方法を示す。
論文 参考訳(メタデータ) (2024-10-14T16:27:03Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Elephant Neural Networks: Born to Be a Continual Learner [7.210328077827388]
破滅的な忘れ物は、何十年にもわたって継続的な学習にとって重要な課題である。
ニューラルネットワークのトレーニング力学におけるアクティベーション機能の役割と,その破滅的忘れに対する影響について検討した。
古典的な活性化関数を象の活性化関数に置き換えることで、破滅的な忘れ物に対するニューラルネットワークのレジリエンスを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2023-10-02T17:27:39Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Online Loss Function Learning [13.744076477599707]
ロス関数学習は、機械学習モデルの損失関数を設計するタスクを自動化することを目的としている。
基本モデルパラメータへの更新毎に,損失関数をオンラインに適応的に更新する新しい損失関数学習手法を提案する。
論文 参考訳(メタデータ) (2023-01-30T19:22:46Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Early Stage Convergence and Global Convergence of Training Mildly
Parameterized Neural Networks [3.148524502470734]
トレーニングの初期段階において,損失はかなりの量減少し,この減少は急速に進行することを示す。
我々は、ニューロンの活性化パターンを顕微鏡で解析し、勾配のより強力な下界を導出するのに役立つ。
論文 参考訳(メタデータ) (2022-06-05T09:56:50Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Plateau Phenomenon in Gradient Descent Training of ReLU networks:
Explanation, Quantification and Avoidance [0.0]
一般に、ニューラルネットワークは勾配型最適化法によって訓練される。
トレーニング開始時に損失関数は急速に低下するが,比較的少数のステップの後に著しく低下する。
本研究の目的は,高原現象の根本原因の同定と定量化である。
論文 参考訳(メタデータ) (2020-07-14T17:33:26Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
破滅的な忘れは、ニューラルネットワークのトレーニングに影響を与え、複数のタスクを逐次学習する能力を制限する。
本研究では,タスクの局所的なミニマを拡大するトレーニング体制の形成に及ぼすドロップアウト,学習速度の低下,バッチサイズの影響について検討した。
論文 参考訳(メタデータ) (2020-06-12T06:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。