Uncertainty Quantification for Transformer Models for Dark-Pattern Detection
- URL: http://arxiv.org/abs/2412.05251v1
- Date: Fri, 06 Dec 2024 18:31:51 GMT
- Title: Uncertainty Quantification for Transformer Models for Dark-Pattern Detection
- Authors: Javier Muñoz, Álvaro Huertas-García, Carlos Martí-González, Enrique De Miguel Ambite,
- Abstract summary: This study focuses on dark-pattern detection, deceptive design choices that manipulate user decisions, undermining autonomy and consent.
We propose a differential fine-tuning approach implemented at the final classification head via uncertainty quantification with transformer-based pre-trained models.
- Score: 0.21427777919040417
- License:
- Abstract: The opaque nature of transformer-based models, particularly in applications susceptible to unethical practices such as dark-patterns in user interfaces, requires models that integrate uncertainty quantification to enhance trust in predictions. This study focuses on dark-pattern detection, deceptive design choices that manipulate user decisions, undermining autonomy and consent. We propose a differential fine-tuning approach implemented at the final classification head via uncertainty quantification with transformer-based pre-trained models. Employing a dense neural network (DNN) head architecture as a baseline, we examine two methods capable of quantifying uncertainty: Spectral-normalized Neural Gaussian Processes (SNGPs) and Bayesian Neural Networks (BNNs). These methods are evaluated on a set of open-source foundational models across multiple dimensions: model performance, variance in certainty of predictions and environmental impact during training and inference phases. Results demonstrate that integrating uncertainty quantification maintains performance while providing insights into challenging instances within the models. Moreover, the study reveals that the environmental impact does not uniformly increase with the incorporation of uncertainty quantification techniques. The study's findings demonstrate that uncertainty quantification enhances transparency and provides measurable confidence in predictions, improving the explainability and clarity of black-box models. This facilitates informed decision-making and mitigates the influence of dark-patterns on user interfaces. These results highlight the importance of incorporating uncertainty quantification techniques in developing machine learning models, particularly in domains where interpretability and trustworthiness are critical.
Related papers
- Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
We introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators.
PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process.
arXiv Detail & Related papers (2025-02-18T14:42:11Z) - Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.