論文の概要: $ρ$-NeRF: Leveraging Attenuation Priors in Neural Radiance Field for 3D Computed Tomography Reconstruction
- arxiv url: http://arxiv.org/abs/2412.05322v1
- Date: Tue, 03 Dec 2024 21:06:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:42.297579
- Title: $ρ$-NeRF: Leveraging Attenuation Priors in Neural Radiance Field for 3D Computed Tomography Reconstruction
- Title(参考訳): $ρ$-NeRF:3次元CT画像再構成のためのニューラルレイディアンスフィールドにおける減衰前処理
- Authors: Li Zhou, Changsheng Fang, Bahareh Morovati, Yongtong Liu, Shuo Han, Yongshun Xu, Hengyong Yu,
- Abstract要約: $rho$-NeRFは、新しいビュー合成(NVS)とCT(Computerd tomography)再構成の新しい標準を設定する。
$rho$-NeRFは、完全に接続されたニューラルネットワークを介して3次元の3Dボリュームを表す。
- 参考スコア(独自算出の注目度): 4.829520688270679
- License:
- Abstract: This paper introduces $\rho$-NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance field enriched with physics-based attenuation priors. The $\rho$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network that takes a single continuous four-dimensional (4D) coordinate, spatial location $(x, y, z)$ and an initialized attenuation value ($\rho$), and outputs the attenuation coefficient at that position. By querying these 4D coordinates along X-ray paths, the classic forward projection technique is applied to integrate attenuation data across the 3D space. By matching and refining pre-initialized attenuation values derived from traditional reconstruction algorithms like Feldkamp-Davis-Kress algorithm (FDK) or conjugate gradient least squares (CGLS), the enriched schema delivers superior fidelity in both projection synthesis and image recognition.
- Abstract(参考訳): 本稿では,新しいビューシンセサイザー(NVS)とCT(CT)の新たな標準を,物理に基づく減衰前処理に富んだ連続的体積放射場をモデル化して構築する,自己教師型アプローチである$\rho$-NeRFを紹介する。
$\rho$-NeRFは、完全に接続されたニューラルネットワークを通じて3次元の体積を表し、単一の連続した4次元(4D)座標、空間的位置$(x, y, z)$と初期化減衰値$\rho$)を取り、その位置で減衰係数を出力する。
これらの4次元座標をX線経路に沿ってクエリすることで、古典的なフォワードプロジェクション技術を用いて3次元空間の減衰データを積分する。
Feldkamp-Davis-Kressアルゴリズム(FDK)や共役勾配最小二乗(CGLS)といった従来の再構成アルゴリズムから導出される事前初期化減衰値のマッチングと精錬により、リッチスキーマは射影合成と画像認識の両方において優れた忠実度を提供する。
関連論文リスト
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction [4.689071714940848]
X線CT(Computerd tomography)を用いた動的事象や変形物体の4次元時間空間再構成は、非常に不適切な逆問題である。
既存のアプローチでは、オブジェクトは数千から数百のX線投影計測画像の間静止していると仮定している。
本稿では,新しい分散学習アルゴリズムを用いて学習した,分散暗黙的ニューラルネットワークを用いた4次元時間空間再構成を提案する。
論文 参考訳(メタデータ) (2024-04-29T19:41:51Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis [0.6990493129893112]
GaSpCTはコンピュータ・トモグラフィー(CT)スキャンのための新しいプロジェクション・ビューを生成するために使用される新しいビュー合成および3次元シーン表現法である。
我々は,2次元画像投影の限られたセットに基づいて,CTにおける新しいビュー合成を可能にするために,ガウススティングフレームワークを適用した。
我々はParkinson's Progression Markers Initiative (PPMI)データセットから脳CTスキャンを用いてモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-04-04T00:28:50Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
本稿では,3次元再構成セグメントと焦点接合を用いたラインフレーム接合の問題について検討する。
ProjectNEATは、クロスアートマッチングをゼロから行わずに、ジョイントニューラルフィールドとビューを楽しみます。
論文 参考訳(メタデータ) (2023-07-14T07:25:47Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
未知視トモグラフィ(UVT)は、未知のランダムな向きで2次元投影から3次元密度マップを再構成する。
提案したOMRはより堅牢で、従来の最先端のOMRアプローチよりも大幅に性能が向上している。
論文 参考訳(メタデータ) (2022-07-06T21:40:59Z) - Optical Diffraction Tomography based on 3D Physics-Inspired Neural
Network (PINN) [0.1310865248866973]
光回折トモグラフィー(ODT)は半透明試料の屈折率(RI)の3次元再構成に使用される新しい3Dイメージング技術である。
ボルンやリトフ近似のような様々な試料のホログラフィー検出に基づいて、3D RIを再構成する様々な逆モデルが提案されている。
本稿では,3次元ニューラルネットワーク(NN)を応用した別のアプローチを提案する。このNNは,光波伝搬の物理理論に基づく物理モデルに基づくコスト関数を用いて訓練する。
論文 参考訳(メタデータ) (2022-06-10T17:19:04Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
本稿では,脳神経信号モデリングと再構成作業を容易にするためのコンパクトな表現として,ファサール埋め込みフィールドemphPREFを提案する。
実験の結果,PreFをベースとしたニューラル信号処理技術は,2次元画像補完,3次元SDF表面回帰,5次元放射野再構成と同等であることがわかった。
論文 参考訳(メタデータ) (2022-05-26T17:43:03Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
ニューラル・ボリューム・フュージョン (BNV-Fusion) は, ニューラル・暗黙表現とニューラル・レンダリングの最近の進歩を活用して高密度3次元再構成を行う。
新しい深度マップをグローバルな暗黙的表現に漸進的に統合するために、我々は新しい二段階融合戦略を提案する。
提案手法を定量的に定性的に評価し,既存手法よりも有意な改善を示した。
論文 参考訳(メタデータ) (2022-04-03T19:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。