Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks
- URL: http://arxiv.org/abs/2412.05330v1
- Date: Wed, 04 Dec 2024 18:46:05 GMT
- Title: Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks
- Authors: D. Cerrone, D. Riccobelli, P. Vitullo, F. Ballarin, J. Falco, F. Acerbi, A. Manzoni, P. Zunino, P. Ciarletta,
- Abstract summary: Glioblastoma is one of the deadliest brain cancers in adults.
In this work, we propose a proof-of-concept for mathematical framework of precision oncology.
We build a robust and efficient computational pipeline to aid clinical decision-making.
- Score: 0.0
- License:
- Abstract: Glioblastoma (GBL) is one of the deadliest brain cancers in adults. The GBL cells invade the physical structures within the brain extracellular environment with patient-specific features. In this work, we propose a proof-of-concept for mathematical framework of precision oncology enabling rapid parameter estimation from neuroimaging data in clinical settings. The proposed diffuse interface model of GBL growth is informed by neuroimaging data, periodically collected in a clinical study from diagnosis to surgery and adjuvant treatment. We build a robust and efficient computational pipeline to aid clinical decision-making based on integrating model reduction techniques and neural networks. Patient specificity is captured through the segmentation of the magnetic resonance imaging into a computational replica of the patient brain, mimicking the brain microstructure by incorporating also the diffusion tensor imaging data. The full order model (FOM) is first discretized using the finite element method and later approximated by a reduced order model (ROM) adopting proper orthogonal decomposition (POD). Trained by clinical data, we finally use neural networks to map the parameter space of GBL evolution over time and to predict the patient-specific model parameters from the observed clinical evolution of the tumor mass.
Related papers
- Segment Anything for Dendrites from Electron Microscopy [36.25707481854301]
We present DendriteSAM, a vision foundation model based on Segment Anything, for interactive and automatic segmentation of dendrites in EM images.
The model is trained on high-resolution EM data from healthy hippocampus rat and is tested on diseased rat and human data.
arXiv Detail & Related papers (2024-11-04T19:54:26Z) - Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
We introduce a novel method that integrates data-driven and physics-based cost functions.
We propose a unique discretization scheme that quantifies how well the learned distributions of tumor and brain tissues adhere to their respective growth and elasticity equations.
arXiv Detail & Related papers (2024-09-30T15:36:14Z) - Spatiotemporal Graph Neural Network Modelling Perfusion MRI [12.712005118761516]
Per vascular MRI (pMRI) offers valuable insights into tumority and promises to predict tumor genotypes.
Yet effective models tailored to 4D pMRI are still lacking.
This study presents the first attempt to model 4D pMRI using a GNN-based model.
arXiv Detail & Related papers (2024-06-10T16:24:46Z) - Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans [1.696497161881026]
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics.
Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells.
This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion PDE model of GBM growth from a single 3D structural MRI snapshot.
arXiv Detail & Related papers (2023-11-28T05:45:20Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
We propose a graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs)
We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model.
Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
arXiv Detail & Related papers (2023-10-02T06:39:08Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Generating counterfactual explanations of tumor spatial proteomes to
discover effective strategies for enhancing immune infiltration [44.99833362998488]
The tumor microenvironment (TME) significantly impacts cancer prognosis due to its immune composition.
Here, we formulate T-cell infiltration prediction as a self-supervised machine learning problem.
We apply our framework to melanoma, colorectal cancer liver metastases, and breast tumor data, discovering perturbations predicted to support T-cell infiltration.
arXiv Detail & Related papers (2022-11-08T05:46:02Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.