論文の概要: Towards Predicting the Success of Transfer-based Attacks by Quantifying Shared Feature Representations
- arxiv url: http://arxiv.org/abs/2412.05351v1
- Date: Fri, 06 Dec 2024 17:33:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:59:15.065848
- Title: Towards Predicting the Success of Transfer-based Attacks by Quantifying Shared Feature Representations
- Title(参考訳): 共有特徴表現の定量化による移動型攻撃の成功予測に向けて
- Authors: Ashley S. Dale, Mei Qiu, Foo Bin Che, Thomas Bsaibes, Lauren Christopher, Paul Salama,
- Abstract要約: この研究は、ターゲットモデル内で脆弱な特徴の存在を特定することによって、攻撃成功の事前予測を行う最初の試みである。
Chen と Liu (2024) による最近の研究は、共通多様体空間に成功した TBA が存在することを示唆する統一フレームワークである多様体攻撃モデルを提案した。
- 参考スコア(独自算出の注目度): 1.9843946334896223
- License:
- Abstract: Much effort has been made to explain and improve the success of transfer-based attacks (TBA) on black-box computer vision models. This work provides the first attempt at a priori prediction of attack success by identifying the presence of vulnerable features within target models. Recent work by Chen and Liu (2024) proposed the manifold attack model, a unifying framework proposing that successful TBA exist in a common manifold space. Our work experimentally tests the common manifold space hypothesis by a new methodology: first, projecting feature vectors from surrogate and target feature extractors trained on ImageNet onto the same low-dimensional manifold; second, quantifying any observed structure similarities on the manifold; and finally, by relating these observed similarities to the success of the TBA. We find that shared feature representation moderately correlates with increased success of TBA (\r{ho}= 0.56). This method may be used to predict whether an attack will transfer without information of the model weights, training, architecture or details of the attack. The results confirm the presence of shared feature representations between two feature extractors of different sizes and complexities, and demonstrate the utility of datasets from different target domains as test signals for interpreting black-box feature representations.
- Abstract(参考訳): ブラックボックスコンピュータビジョンモデルにおける転送ベース攻撃(TBA)の成功を説明するために、多くの努力がなされている。
この研究は、ターゲットモデル内で脆弱な特徴の存在を特定することによって、攻撃成功の事前予測を行う最初の試みである。
Chen と Liu (2024) による最近の研究は、共通多様体空間に成功した TBA が存在することを示唆する統一フレームワークである多様体攻撃モデルを提案した。
第1に、イメージネット上で訓練された特徴抽出器から同じ低次元多様体に特徴ベクトルを投影し、第2に、その多様体上の観測された構造類似性を定量化し、最後に、これらの観測された類似性をTBAの成功に関連付ける。
共有特徴表現は, TBA (\r{ho}= 0.56) の成功と中程度に相関することがわかった。
この方法では、モデルウェイト、トレーニング、アーキテクチャ、または攻撃の詳細に関する情報なしで攻撃が転送されるかどうかを予測することができる。
その結果、異なる大きさと複雑さの2つの特徴抽出器間の共有特徴表現の存在を確認し、ブラックボックスの特徴表現を解釈するためのテスト信号として、異なる対象領域からのデータセットの有用性を実証した。
関連論文リスト
- Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T09:37:16Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
マルチComprehension (MC) Ensemble は,OOD (Out-of-Distribution) 特徴表現を拡大するための戦略として提案されている。
OOD検出におけるMC Ensemble戦略の優れた性能を示す実験結果を得た。
これにより,提案手法がトレーニング分布外のインスタンスを検出できるモデルの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-24T18:43:04Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Rethinking Model Ensemble in Transfer-based Adversarial Attacks [46.82830479910875]
転送可能性を改善する効果的な戦略は、モデルのアンサンブルを攻撃することである。
これまでの作業は、単に異なるモデルの出力を平均化するだけであった。
我々は、より移動可能な敵の例を生成するために、CWA(Common Weakness Attack)を提案する。
論文 参考訳(メタデータ) (2023-03-16T06:37:16Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Perturbing Across the Feature Hierarchy to Improve Standard and Strict
Blackbox Attack Transferability [100.91186458516941]
我々は、ディープニューラルネットワーク(DNN)画像分類器の領域におけるブラックボックス転送に基づく敵攻撃脅威モデルを検討する。
我々は,多層摂動が可能なフレキシブルアタックフレームワークを設計し,最先端のターゲット転送性能を示す。
提案手法が既存の攻撃戦略より優れている理由を解析し,ブラックボックスモデルに対する限られたクエリが許された場合に,メソッドの拡張を示す。
論文 参考訳(メタデータ) (2020-04-29T16:00:13Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。