Knowledge Graphs are all you need: Leveraging KGs in Physics Question Answering
- URL: http://arxiv.org/abs/2412.05453v2
- Date: Mon, 23 Dec 2024 20:40:52 GMT
- Title: Knowledge Graphs are all you need: Leveraging KGs in Physics Question Answering
- Authors: Krishnasai Addala, Kabir Dev Paul Baghel, Dhruv Jain, Chhavi Kirtani, Avinash Anand, Rajiv Ratn Shah,
- Abstract summary: We introduce a pipeline aimed at enhancing model response quality for Question Answering tasks.
By employing LLMs to construct knowledge graphs that capture the internal logic of the questions, these graphs then guide the generation of subquestions.
Results show that sub-questions derived from knowledge graphs exhibit significantly improved fidelity to the original question's logic.
- Score: 28.279969366096978
- License:
- Abstract: This study explores the effectiveness of using knowledge graphs generated by large language models to decompose high school-level physics questions into sub-questions. We introduce a pipeline aimed at enhancing model response quality for Question Answering tasks. By employing LLMs to construct knowledge graphs that capture the internal logic of the questions, these graphs then guide the generation of subquestions. We hypothesize that this method yields sub-questions that are more logically consistent with the original questions compared to traditional decomposition techniques. Our results show that sub-questions derived from knowledge graphs exhibit significantly improved fidelity to the original question's logic. This approach not only enhances the learning experience by providing clearer and more contextually appropriate sub-questions but also highlights the potential of LLMs to transform educational methodologies. The findings indicate a promising direction for applying AI to improve the quality and effectiveness of educational content.
Related papers
- Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.
However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.
This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.
We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQA involves answering natural language questions by leveraging structured information stored in a knowledge graph.
We propose a Question-guided Knowledge Graph Re-scoring method (Q-KGR) to eliminate noisy pathways for the input question.
We also introduce Knowformer, a parameter-efficient method for injecting the re-scored knowledge graph into large language models to enhance their ability to perform factual reasoning.
arXiv Detail & Related papers (2024-10-02T10:27:07Z) - Hierarchical Deconstruction of LLM Reasoning: A Graph-Based Framework for Analyzing Knowledge Utilization [30.349165483935682]
How large language models (LLMs) use their knowledge for reasoning is not yet well understood.
We develop the DepthQA dataset, deconstructing questions into three depths: (i) recalling conceptual knowledge, (ii) applying procedural knowledge, and (iii) analyzing strategic knowledge.
Distinct patterns of discrepancies are observed across model capacity and possibility of training data memorization.
arXiv Detail & Related papers (2024-06-27T19:29:36Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs [102.37496443389203]
'Logic-Query-of-Thoughts' (LGOT) is the first of its kind to combine knowledge graph reasoning and large language models.
Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.
arXiv Detail & Related papers (2024-03-17T17:01:45Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
We studied the impact of contextual knowledge on the Question-answering (QA) objective using pre-trained language models (LMs) and knowledge graphs (KGs)
We found that incorporating knowledge facts context led to a significant improvement in performance.
This suggests that the integration of contextual knowledge facts may be more impactful for enhancing question answering performance.
arXiv Detail & Related papers (2023-12-31T03:51:31Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z) - Structured Knowledge Grounding for Question Answering [0.23068481501673416]
We propose to leverage the language and knowledge for knowledge based question-answering with flexibility, breadth of coverage and structured reasoning.
Specifically, we devise a knowledge construction method that retrieves the relevant context with a dynamic hop.
And we devise a deep fusion mechanism to further bridge the information exchanging bottleneck between the language and the knowledge.
arXiv Detail & Related papers (2022-09-17T08:48:50Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
One of the most challenging question types in VQA is when answering the question requires outside knowledge not present in the image.
In this work we study open-domain knowledge, the setting when the knowledge required to answer a question is not given/annotated, neither at training nor test time.
We tap into two types of knowledge representations and reasoning. First, implicit knowledge which can be learned effectively from unsupervised language pre-training and supervised training data with transformer-based models.
arXiv Detail & Related papers (2020-12-20T20:13:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.