論文の概要: Template-free Articulated Gaussian Splatting for Real-time Reposable Dynamic View Synthesis
- arxiv url: http://arxiv.org/abs/2412.05570v1
- Date: Sat, 07 Dec 2024 07:35:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:23.238315
- Title: Template-free Articulated Gaussian Splatting for Real-time Reposable Dynamic View Synthesis
- Title(参考訳): テンプレートフリーArticulated Gaussian Splatting for Real-time Reposable Dynamic View Synthesis (特集:情報ネットワーク)
- Authors: Diwen Wan, Yuxiang Wang, Ruijie Lu, Gang Zeng,
- Abstract要約: 本稿では,ビデオから動的オブジェクトのスケルトンモデルを自動的に検出する手法を提案する。
スーパーポイントを剛性部分として扱うことで、直感的な手がかりによって基盤となる骨格モデルを発見し、キネマティックモデルを用いて最適化することができる。
再使用可能な3Dオブジェクトの取得において,本手法の有効性と有効性を示す実験を行った。
- 参考スコア(独自算出の注目度): 21.444265403717015
- License:
- Abstract: While novel view synthesis for dynamic scenes has made significant progress, capturing skeleton models of objects and re-posing them remains a challenging task. To tackle this problem, in this paper, we propose a novel approach to automatically discover the associated skeleton model for dynamic objects from videos without the need for object-specific templates. Our approach utilizes 3D Gaussian Splatting and superpoints to reconstruct dynamic objects. Treating superpoints as rigid parts, we can discover the underlying skeleton model through intuitive cues and optimize it using the kinematic model. Besides, an adaptive control strategy is applied to avoid the emergence of redundant superpoints. Extensive experiments demonstrate the effectiveness and efficiency of our method in obtaining re-posable 3D objects. Not only can our approach achieve excellent visual fidelity, but it also allows for the real-time rendering of high-resolution images.
- Abstract(参考訳): ダイナミックなシーンのための新しいビュー合成は大きな進歩を遂げているが、オブジェクトの骨格モデルをキャプチャして再作成することは難しい課題である。
この問題に対処するため,本稿では,オブジェクト固有のテンプレートを必要とせずにビデオから動的オブジェクトのスケルトンモデルを自動的に検出する手法を提案する。
提案手法は3次元ガウス散乱とスーパーポイントを用いて動的物体を再構成する。
スーパーポイントを剛性部分として扱うことで、直感的な手がかりによって基盤となる骨格モデルを発見し、キネマティックモデルを用いて最適化することができる。
さらに、冗長なスーパーポイントの出現を避けるために適応制御戦略を適用する。
広汎な実験により,再使用可能な3Dオブジェクトの取得において,本手法の有効性と有効性を示した。
我々のアプローチは、優れた視覚的忠実性を達成するだけでなく、高解像度画像のリアルタイムレンダリングを可能にする。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - TFS-NeRF: Template-Free NeRF for Semantic 3D Reconstruction of Dynamic Scene [25.164085646259856]
本稿では,スパースやシングルビューRGBビデオから撮影したダイナミックシーンのためのテンプレートレス3DセマンティックNeRFを提案する。
相互作用する物体の動きを遠ざけ, 濃度ごとのスキン厚みを最適化することにより, 高精度でセマンティックに分離可能なジオメトリを効率的に生成する。
論文 参考訳(メタデータ) (2024-09-26T01:34:42Z) - DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
動的オブジェクトの表現を大幅に強化するフレームワークであるDENSERを提案する。
提案手法は最先端の手法を広いマージンで大幅に上回る。
論文 参考訳(メタデータ) (2024-09-16T07:11:58Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
オブジェクト中心学習が可能な動的シーンのための3次元生成モデルDynaVol-Sを提案する。
ボキセル化は、個々の空間的位置において、物体ごとの占有確率を推定する。
提案手法は2次元セマンティックな特徴を統合して3次元セマンティック・グリッドを作成し,複数の不整合ボクセル・グリッドを通してシーンを表現する。
論文 参考訳(メタデータ) (2024-07-30T15:33:58Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、世界が厳格に動く物体と背景に分解される動的なシーンの構成モデルを総合的に捉え、最適化する。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - Template-free Articulated Neural Point Clouds for Reposable View
Synthesis [11.535440791891217]
本研究では,マルチビュー映像から動的NeRFと関連する骨格モデルを共同で学習する新しい手法を提案する。
我々のフォワードウォーピングアプローチは、新しいビューやポーズを合成する際に、最先端の視覚的忠実度を達成する。
論文 参考訳(メタデータ) (2023-05-30T14:28:08Z) - Stereo Neural Vernier Caliper [57.187088191829886]
学習に基づくステレオ3Dオブジェクト検出のための新しいオブジェクト中心フレームワークを提案する。
初期3次元立方体推定値から改良された更新を予測する方法の問題に対処する。
提案手法は,KITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-21T14:36:07Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
視覚表現モデルと動的モデルの両方を協調的に最適化する新しい学習フレームワークを提案する。
我々は,標準モデルに基づく学習手法をロープや布の操作スイートで大幅に改善した。
論文 参考訳(メタデータ) (2020-03-11T17:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。