論文の概要: Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference
- arxiv url: http://arxiv.org/abs/2412.05590v1
- Date: Sat, 07 Dec 2024 08:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:14.796048
- Title: Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference
- Title(参考訳): サンプル効率なシミュレーションベース推論のためのアクティブ逐次後部推定
- Authors: Sam Griesemer, Defu Cao, Zijun Cui, Carolina Osorio, Yan Liu,
- Abstract要約: 逐次的神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークと最先端の後方推定手法より優れる。
- 参考スコア(独自算出の注目度): 12.019504660711231
- License:
- Abstract: Computer simulations have long presented the exciting possibility of scientific insight into complex real-world processes. Despite the power of modern computing, however, it remains challenging to systematically perform inference under simulation models. This has led to the rise of simulation-based inference (SBI), a class of machine learning-enabled techniques for approaching inverse problems with stochastic simulators. Many such methods, however, require large numbers of simulation samples and face difficulty scaling to high-dimensional settings, often making inference prohibitive under resource-intensive simulators. To mitigate these drawbacks, we introduce active sequential neural posterior estimation (ASNPE). ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model. The proposed acquisition scheme is easily integrated into existing posterior estimation pipelines, allowing for improved sample efficiency with low computational overhead. We further demonstrate the effectiveness of the proposed method in the travel demand calibration setting, a high-dimensional inverse problem commonly requiring computationally expensive traffic simulators. Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network, as well as demonstrates a performance advantage over non-active counterparts on a suite of SBI benchmark environments.
- Abstract(参考訳): コンピュータシミュレーションは、複雑な現実世界のプロセスに関する科学的洞察のエキサイティングな可能性を示してきた。
しかし、現代のコンピューティングの力にもかかわらず、シミュレーションモデルの下で体系的に推論を実行することは依然として困難である。
これにより、確率的シミュレータによる逆問題にアプローチするための機械学習対応技術のクラスであるシミュレーションベース推論(SBI)が台頭した。
しかし、そのような手法の多くは多数のシミュレーションサンプルを必要とし、高次元設定へのスケーリングが困難であり、しばしばリソース集約型シミュレータでは推論が禁止される。
これらの欠点を軽減するために, 能動的逐次神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は既存の後方推定パイプラインに容易に統合でき、計算オーバーヘッドの少ないサンプル効率を向上させることができる。
さらに,計算コストの高い交通シミュレータを必要とする高次元逆問題である旅行需要校正設定における提案手法の有効性を示す。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークや最先端の後方推定手法よりも優れており,また,SBIベンチマーク環境上での非アクティブなベンチマークよりも性能上の優位性を示す。
関連論文リスト
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-27T02:37:01Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Surrogate Neural Networks for Efficient Simulation-based Trajectory
Planning Optimization [28.292234483886947]
本稿では、ニューラルネットワークの形で代理モデルを用いて、参照軌道のシミュレーションに基づく最適化の計算時間を短縮する手法を提案する。
提案手法は,従来よりも74%優れた参照軌道が得られており,計算時間が大幅に短縮されることが明らかとなった。
論文 参考訳(メタデータ) (2023-03-30T15:44:30Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Truncated Marginal Neural Ratio Estimation [5.438798591410838]
本稿では、シミュレーション効率と高速な実験後テスト容易性を同時に提供するニューラルネットワークシミュレータベースの推論アルゴリズムを提案する。
本手法は関節後部ではなく低次元縁後部を同時に推定することによりシミュレーションを効率化する。
局所的アモータイズ後部を推定することにより,提案アルゴリズムは推論結果のロバスト性の効率的な実証試験を可能にする。
論文 参考訳(メタデータ) (2021-07-02T18:00:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
本研究では,ネスト型ニューラル・サイエンス・ツー・エビデンス比推定とシミュレーションの再利用のためのアルゴリズムを提案する。
これらのアルゴリズムが組み合わさって、縁部および関節後部の自動的および極端にシミュレーターによる効率的な推定を可能にする。
論文 参考訳(メタデータ) (2020-11-27T19:00:07Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
確率自由推論のためのベイズ統計学における現代シミュレータのパワーと最近の技術を活用することを提案する。
シミュレーションパラメータの後方分布は、システムの潜在的非解析モデルによって伝播される。
実験により、制御器の提案により、古典的な制御やロボット工学のタスクにおいて、優れた性能と堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2020-02-18T05:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。