論文の概要: Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time
- arxiv url: http://arxiv.org/abs/2011.13951v1
- Date: Fri, 27 Nov 2020 19:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 02:54:56.045805
- Title: Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time
- Title(参考訳): swyftによるシミュレーション効率のよい後方後方推定: 貴重な時間を無駄にしない
- Authors: Benjamin Kurt Miller, Alex Cole, Gilles Louppe, Christoph Weniger
- Abstract要約: 本研究では,ネスト型ニューラル・サイエンス・ツー・エビデンス比推定とシミュレーションの再利用のためのアルゴリズムを提案する。
これらのアルゴリズムが組み合わさって、縁部および関節後部の自動的および極端にシミュレーターによる効率的な推定を可能にする。
- 参考スコア(独自算出の注目度): 5.533353383316288
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present algorithms (a) for nested neural likelihood-to-evidence ratio
estimation, and (b) for simulation reuse via an inhomogeneous Poisson point
process cache of parameters and corresponding simulations. Together, these
algorithms enable automatic and extremely simulator efficient estimation of
marginal and joint posteriors. The algorithms are applicable to a wide range of
physics and astronomy problems and typically offer an order of magnitude better
simulator efficiency than traditional likelihood-based sampling methods. Our
approach is an example of likelihood-free inference, thus it is also applicable
to simulators which do not offer a tractable likelihood function. Simulator
runs are never rejected and can be automatically reused in future analysis. As
functional prototype implementation we provide the open-source software package
swyft.
- Abstract(参考訳): アルゴリズムを紹介します
(a)ネスト型神経電位-証拠比推定、及び
b) パラメータの非均一なポアソン点プロセスキャッシュとそれに対応するシミュレーションによるシミュレーションの再利用。
これらのアルゴリズムが組み合わさって、縁および関節後部の自動的および極めてシミュレーターな推定を可能にする。
アルゴリズムは物理学や天文学の幅広い問題に適用でき、通常、従来の確率に基づくサンプリング法よりもはるかに優れたシミュレータ効率を提供する。
提案手法は確率自由推論の一例であり, トラクタブルな確率関数を提供しないシミュレータにも適用可能である。
シミュレータの実行は決して拒否されず、将来の分析で自動的に再利用できる。
機能的なプロトタイプ実装として、オープンソースのソフトウェアパッケージswyftを提供しています。
関連論文リスト
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
データサイズが大きくなるにつれて、イテレーションコストの削減が重要な目標になります。
科学計算における初期値問題の並列シミュレーションの成功に触発されて,タスクをサンプリングするための並列Picard法を提案する。
本研究は,動力学に基づくサンプリング・拡散モデルの科学的計算におけるシミュレーション手法の潜在的利点を強調した。
論文 参考訳(メタデータ) (2024-12-10T11:50:46Z) - Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
逐次的神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークと最先端の後方推定手法より優れる。
論文 参考訳(メタデータ) (2024-12-07T08:57:26Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Compositional simulation-based inference for time series [21.9975782468709]
シミュレータは、時間とともに何千もの単一状態遷移を通して現実世界のダイナミクスをエミュレートする。
本研究では,個々の状態遷移に整合したパラメータを局所的に同定することで,マルコフシミュレータを活用可能なSBIフレームワークを提案する。
次に、これらの局所的な結果を合成して、時系列の観測全体と一致した後続のオーバーパラメータを求める。
論文 参考訳(メタデータ) (2024-11-05T01:55:07Z) - The Power of Resets in Online Reinforcement Learning [73.64852266145387]
ローカルシミュレータアクセス(あるいはローカルプランニング)を用いたオンライン強化学習を通してシミュレータのパワーを探求する。
カバー性が低いMPPは,Qstar$-realizabilityのみのサンプル効率で学習可能であることを示す。
ローカルシミュレーターアクセス下では, 悪名高いExogenous Block MDP問題が抽出可能であることを示す。
論文 参考訳(メタデータ) (2024-04-23T18:09:53Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
後部ブートストラップと最大平均誤差推定器に基づく新しいアルゴリズムを提案する。
これにより、強い性質を持つ高パラレライズ可能なベイズ推論アルゴリズムが導かれる。
このアプローチは、g-and-k分布やトグル・スウィッチモデルなど、さまざまな例に基づいて評価される。
論文 参考訳(メタデータ) (2022-02-09T22:12:19Z) - Truncated Marginal Neural Ratio Estimation [5.438798591410838]
本稿では、シミュレーション効率と高速な実験後テスト容易性を同時に提供するニューラルネットワークシミュレータベースの推論アルゴリズムを提案する。
本手法は関節後部ではなく低次元縁後部を同時に推定することによりシミュレーションを効率化する。
局所的アモータイズ後部を推定することにより,提案アルゴリズムは推論結果のロバスト性の効率的な実証試験を可能にする。
論文 参考訳(メタデータ) (2021-07-02T18:00:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。
ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。
実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:55Z) - Black-Box Optimization with Local Generative Surrogates [6.04055755718349]
物理学や工学などの分野において、多くのプロセスは難易度を持つ非微分可能シミュレータでモデル化される。
本稿では,パラメータ空間の局所的近傍におけるシミュレータを近似するために,深部生成モデルを導入する。
パラメータ空間に対するシミュレータの依存性が低次元部分多様体に制約されている場合、本手法はベースライン法よりも高速にミニマを実現する。
論文 参考訳(メタデータ) (2020-02-11T19:02:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。