Quantum Annealing and Tensor Networks: a Powerful Combination to Solve Optimization Problems
- URL: http://arxiv.org/abs/2412.05595v1
- Date: Sat, 07 Dec 2024 09:20:20 GMT
- Title: Quantum Annealing and Tensor Networks: a Powerful Combination to Solve Optimization Problems
- Authors: Miquel Albertà Binimelis,
- Abstract summary: The aim of this thesis is not to compare quantum devices with tensor network algorithms.
We explore a potential synergy between these technologies, focusing on how two flagship algorithms might collaborate in the future.
This thesis outlines an approach to this problem using finite automata, which we apply to construct the MPO for our case study.
- Score: 0.0
- License:
- Abstract: Quantum computing has long promised to revolutionize the way we solve complex problems. At the same time, tensor networks are widely used across various fields due to their computational efficiency and capacity to represent intricate systems. While both technologies can address similar problems, the primary aim of this thesis is not to compare them. Such comparison would be unfair, as quantum devices are still in an early stage, whereas tensor network algorithms represent the state-of-the-art in quantum simulation. Instead, we explore a potential synergy between these technologies, focusing on how two flagship algorithms from each paradigm, the Density Matrix Renormalization Group (DMRG) and quantum annealing, might collaborate in the future. Furthermore, a significant challenge in the DMRG algorithm is identifying an appropriate tensor network representation for the quantum system under study. The representation commonly used is called Matrix Product Operator (MPO), and it is notoriously difficult to obtain for certain systems. This thesis outlines an approach to this problem using finite automata, which we apply to construct the MPO for our case study. Finally, we present a practical application of this framework through the quadratic knapsack problem (QKP). Despite its apparent simplicity, the QKP is a fundamental problem in computer science with numerous practical applications. In addition to quantum annealing and the DMRG algorithm, we implement a dynamic programming approach to evaluate the quality of our results. Our results highlight the power of tensor networks and the potential of quantum annealing for solving optimization problems. Moreover, this thesis is designed to be self-explanatory, ensuring that readers with a solid mathematical background can fully understand the content without prior knowledge of quantum mechanics.
Related papers
- Tensor Quantum Programming [0.0]
We develop an algorithm that encodes Matrix Product Operators into quantum circuits with a depth that depends linearly on the number of qubits.
It demonstrates effectiveness on up to 50 qubits for several frequently encountered in differential equations, optimization problems, and quantum chemistry.
arXiv Detail & Related papers (2024-03-20T10:44:00Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Computing and Tensor Networks for Laminate Design: A Novel Approach to Stacking Sequence Retrieval [1.6421520075844793]
A prime example is the weight optimization of laminated composite materials, which to this day remains a formidable problem.
The rapidly developing field of quantum computation may offer novel approaches for addressing these intricate problems.
arXiv Detail & Related papers (2024-02-09T15:01:56Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum Computing for Artificial Intelligence Based Mobile Network
Optimization [0.0]
We discuss how certain radio access network optimization problems can be modelled using the concept of constraint satisfaction problems in artificial intelligence.
As a case study, we discuss root sequence index (RSI) assignment problem - an important LTE/NR physical random access channel configuration related automation use-case.
We formulate RSI assignment as quadratic unconstrained binary optimization (QUBO) problem constructed using data ingested from a commercial mobile network, and solve it using a cloud-based commercially available quantum computing platform.
arXiv Detail & Related papers (2021-06-26T01:05:43Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.