No-Free-Lunch Theories for Tensor-Network Machine Learning Models
- URL: http://arxiv.org/abs/2412.05674v1
- Date: Sat, 07 Dec 2024 14:41:24 GMT
- Title: No-Free-Lunch Theories for Tensor-Network Machine Learning Models
- Authors: Jing-Chuan Wu, Qi Ye, Dong-Ling Deng, Li-Wei Yu,
- Abstract summary: We focus on the rigorous formulation of their no-free-lunch theorem -- essential yet notoriously challenging to formalize for specific tensor network machine learning models.
We first prove a no-free-lunch theorem for machine learning models based on matrix product states, i.e., the one-dimensional tensor network states.
We circumvent the challenging issue of calculating the partition function for two-dimensional Ising model, and prove the no-free-lunch theorem for the case of two-dimensional entangled-pair state.
- Score: 4.410253346975833
- License:
- Abstract: Tensor network machine learning models have shown remarkable versatility in tackling complex data-driven tasks, ranging from quantum many-body problems to classical pattern recognitions. Despite their promising performance, a comprehensive understanding of the underlying assumptions and limitations of these models is still lacking. In this work, we focus on the rigorous formulation of their no-free-lunch theorem -- essential yet notoriously challenging to formalize for specific tensor network machine learning models. In particular, we rigorously analyze the generalization risks of learning target output functions from input data encoded in tensor network states. We first prove a no-free-lunch theorem for machine learning models based on matrix product states, i.e., the one-dimensional tensor network states. Furthermore, we circumvent the challenging issue of calculating the partition function for two-dimensional Ising model, and prove the no-free-lunch theorem for the case of two-dimensional projected entangled-pair state, by introducing the combinatorial method associated to the "puzzle of polyominoes". Our findings reveal the intrinsic limitations of tensor network-based learning models in a rigorous fashion, and open up an avenue for future analytical exploration of both the strengths and limitations of quantum-inspired machine learning frameworks.
Related papers
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - Quantized Fourier and Polynomial Features for more Expressive Tensor
Network Models [9.18287948559108]
We exploit the tensor structure present in the features by constraining the model weights to be an underparametrized tensor network.
We show that, for the same number of model parameters, the resulting quantized models have a higher bound on the VC-dimension as opposed to their non-quantized counterparts.
arXiv Detail & Related papers (2023-09-11T13:18:19Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning [80.1018596899899]
We argue that neural network models share this same preference, formalized using Kolmogorov complexity.
Our experiments show that pre-trained and even randomly language models prefer to generate low-complexity sequences.
These observations justify the trend in deep learning of unifying seemingly disparate problems with an increasingly small set of machine learning models.
arXiv Detail & Related papers (2023-04-11T17:22:22Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Tensor networks for unsupervised machine learning [9.897828174118974]
We present the Autoregressive Matrix Product States (AMPS), a tensor-network-based model combining the matrix product states from quantum many-body physics and the autoregressive models from machine learning.
We show that the proposed model significantly outperforms the existing tensor-network-based models and the restricted Boltzmann machines.
arXiv Detail & Related papers (2021-06-24T12:51:00Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - Anomaly Detection with Tensor Networks [2.3895981099137535]
We exploit the memory and computational efficiency of tensor networks to learn a linear transformation over a space with a dimension exponential in the number of original features.
We produce competitive results on image datasets, despite not exploiting the locality of images.
arXiv Detail & Related papers (2020-06-03T20:41:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.