論文の概要: Charting the Shapes of Stories with Game Theory
- arxiv url: http://arxiv.org/abs/2412.05747v1
- Date: Sat, 07 Dec 2024 21:12:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:53:40.132499
- Title: Charting the Shapes of Stories with Game Theory
- Title(参考訳): ゲーム理論による物語の形状図の作成
- Authors: Constantinos Daskalakis, Ian Gemp, Yanchen Jiang, Renato Paes Leme, Christos Papadimitriou, Georgios Piliouras,
- Abstract要約: 我々はAIを用いて、ストーリーの構造を定量的分析が可能なゲーム理論オブジェクトとしてモデル化する。
我々はシェイクスピアの有名なロメオとジュリエットに提案されたテクニックを実演する。
- 参考スコア(独自算出の注目度): 41.8376313099588
- License:
- Abstract: Stories are records of our experiences and their analysis reveals insights into the nature of being human. Successful analyses are often interdisciplinary, leveraging mathematical tools to extract structure from stories and insights from structure. Historically, these tools have been restricted to one dimensional charts and dynamic social networks; however, modern AI offers the possibility of identifying more fully the plot structure, character incentives, and, importantly, counterfactual plot lines that the story could have taken but did not take. In this work, we use AI to model the structure of stories as game-theoretic objects, amenable to quantitative analysis. This allows us to not only interrogate each character's decision making, but also possibly peer into the original author's conception of the characters' world. We demonstrate our proposed technique on Shakespeare's famous Romeo and Juliet. We conclude with a discussion of how our analysis could be replicated in broader contexts, including real-life scenarios.
- Abstract(参考訳): 物語は私たちの経験の記録であり、その分析は人間の本質に関する洞察を明らかにします。
成功した分析はしばしば学際的であり、数学的ツールを活用して物語から構造を抽出し、構造から洞察を得る。
歴史的に、これらのツールは1次元のチャートや動的なソーシャルネットワークに制限されてきたが、現代のAIは、ストーリーの構造、キャラクターのインセンティブ、そして重要なことは、ストーリーが取るべきだったが取らなかった偽のプロット線をより完全に特定する可能性を提供している。
本研究では,AIを用いてストーリーの構造を定量的分析が可能なゲーム理論オブジェクトとしてモデル化する。
これにより、各キャラクターの判断を問うだけでなく、原作者のキャラクターの世界観を覗き込むことができる。
我々はシェイクスピアの有名なロメオとジュリエットに提案されたテクニックを実演する。
我々は、実際のシナリオを含む、より広い文脈で分析がどのように複製されるかについての議論で締めくくった。
関連論文リスト
- Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
本稿では,一貫した接地的・中核的な特徴を持つ視覚的ストーリーを予測できる最初のモデルを提案する。
我々のモデルは、広く使われているVISTベンチマークの上に構築された新しいデータセットに基づいて微調整されています。
また、物語における文字の豊かさとコア参照を測定するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-09-20T14:56:33Z) - Mapping News Narratives Using LLMs and Narrative-Structured Text Embeddings [0.0]
構造主義言語理論に基づく数値的物語表現を導入する。
オープンソースLLMを用いてアクタントを抽出し,それをナラティブ構造化テキスト埋め込みに統合する。
本稿では,イスラエル・パレスチナ紛争に関するアル・ジャジーラとワシントン・ポストの新聞記事5000件を例に,本手法の分析的考察を紹介する。
論文 参考訳(メタデータ) (2024-09-10T14:15:30Z) - StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [8.851718319632973]
大きな言語モデル(LLM)は仮想文字の振る舞いを駆動し、プロットは文字と環境間の相互作用から現れる。
著者の著作意図と LLM によるキャラクタシミュレーションの創発的行動とを仲介するプロット作成ワークフローを提案する。
このプロセスは「生きた物語」を作り、様々なゲーム世界の状態に動的に適応し、著者、キャラクターシミュレーション、プレイヤーが共同で物語を作る。
論文 参考訳(メタデータ) (2024-05-17T23:04:51Z) - Understanding Social Structures from Contemporary Literary Fiction using
Character Interaction Graph -- Half Century Chronology of Influential Bengali
Writers [2.103087897983347]
社会構造や現実世界の出来事は、しばしば現代文学に影響を及ぼす。
文字相互作用グラフを用いて、現代文化が文学の風景に与える影響について、社会的問いかけを探索する。
論文 参考訳(メタデータ) (2023-10-25T20:09:14Z) - TVShowGuess: Character Comprehension in Stories as Speaker Guessing [23.21452223968301]
物語における架空のキャラクターを理解するための機械のスキルを評価するための新しいタスクを提案する。
タスクであるTVShowGuessは、TVシリーズのスクリプトをベースとして、シーンの背景や対話に基づいて匿名のメインキャラクターを推測する形式をとっている。
我々の人間による研究は、キャラクターの個性、事実、個性体験の記憶など、複数の種類の人格の理解をカバーしている。
論文 参考訳(メタデータ) (2022-04-16T05:15:04Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
PlotMachinesは、動的プロット状態を追跡することによってアウトラインをコヒーレントなストーリーに変換することを学習する、ニューラルな物語モデルである。
さらに,PlotMachinesを高レベルな談話構造で強化し,モデルが物語の異なる部分に対応する筆記スタイルを学習できるようにした。
論文 参考訳(メタデータ) (2020-04-30T17:16:31Z) - Tension Space Analysis for Emergent Narrative [0.1784936803975635]
本稿では,可能世界のナラトロジー理論を用いた創発的物語への新たなアプローチを提案する。
本研究では,このようなシステムにおける作業設計を,表現的範囲分析に触発された形式的解析手法を用いて理解する方法を実証する。
最後に、スケッチベースのインタフェースを用いて、創発的な物語システムのために、コンテンツを作成できる新しい方法を提案する。
論文 参考訳(メタデータ) (2020-04-22T19:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。