MG-3D: Multi-Grained Knowledge-Enhanced 3D Medical Vision-Language Pre-training
- URL: http://arxiv.org/abs/2412.05876v1
- Date: Sun, 08 Dec 2024 09:45:59 GMT
- Title: MG-3D: Multi-Grained Knowledge-Enhanced 3D Medical Vision-Language Pre-training
- Authors: Xuefeng Ni, Linshan Wu, Jiaxin Zhuang, Qiong Wang, Mingxiang Wu, Varut Vardhanabhuti, Lihai Zhang, Hanyu Gao, Hao Chen,
- Abstract summary: 3D medical image analysis is pivotal in numerous clinical applications.
Large-scale vision-language pre-training remains underexplored in 3D medical image analysis.
We propose MG-3D, pre-trained on large-scale data (47.1K)
- Score: 7.968487067774351
- License:
- Abstract: 3D medical image analysis is pivotal in numerous clinical applications. However, the scarcity of labeled data and limited generalization capabilities hinder the advancement of AI-empowered models. Radiology reports are easily accessible and can serve as weakly-supervised signals. However, large-scale vision-language pre-training (VLP) remains underexplored in 3D medical image analysis. Specifically, the insufficient investigation into multi-grained radiology semantics and their correlations across patients leads to underutilization of large-scale volume-report data. Considering intra-patient cross-modal semantic consistency and inter-patient semantic correlations, we propose a multi-task VLP method, MG-3D, pre-trained on large-scale data (47.1K), addressing the challenges by the following two aspects: 1) Establishing the correspondence between volume semantics and multi-grained medical knowledge of each patient with cross-modal global alignment and complementary modality-guided local reconstruction, ensuring intra-patient features of different modalities cohesively represent the same semantic content; 2) Correlating inter-patient visual semantics based on fine-grained report correlations across patients, and keeping sensitivity to global individual differences via contrastive learning, enhancing the discriminative feature representation. Furthermore, we delve into the scaling law to explore potential performance improvements. Comprehensive evaluations across nine uni- and cross-modal clinical tasks are carried out to assess model efficacy. Extensive experiments on both internal and external datasets demonstrate the superior transferability, scalability, and generalization of MG-3D, showcasing its potential in advancing feature representation for 3D medical image analysis. Code will be available: https://github.com/Xuefeng-Ni/MG-3D.
Related papers
- Arbitrary Data as Images: Fusion of Patient Data Across Modalities and Irregular Intervals with Vision Transformers [1.194275822303467]
Vision Transformer for irregular sampled Multi-modal Measurements (ViTiMM)
Our approach, Vision Transformer for irregular sampled Multi-modal Measurements (ViTiMM), not only simplifies data preprocessing and modeling but also outperforms current state-of-the-art methods in predicting in-hospital mortality and phenotyping, as evaluated on 6,175 patients from the MIMIC-IV dataset.
We hope our work inspires advancements in multi-modal medical AI by reducing the training complexity to (visual) prompt engineering, thus lowering entry barriers and enabling no-code solutions for training.
arXiv Detail & Related papers (2025-01-30T09:52:15Z) - Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - Self-supervised 3D Patient Modeling with Multi-modal Attentive Fusion [32.71972792352939]
3D patient body modeling is critical to the success of automated patient positioning for smart medical scanning and operating rooms.
Existing CNN-based end-to-end patient modeling solutions typically require customized network designs demanding large amount of relevant training data.
We propose a generic modularized 3D patient modeling method consists of (a) a multi-modal keypoint detection module with attentive fusion for 2D patient joint localization.
We demonstrate the efficacy of the proposed method by extensive patient positioning experiments on both public and clinical data.
arXiv Detail & Related papers (2024-03-05T18:58:55Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
We propose an Unified Medical Image Pre-training framework, namely UniMedI.
UniMedI uses diagnostic reports as common semantic space to create unified representations for diverse modalities of medical images.
We evaluate its performance on both 2D and 3D images across 10 different datasets.
arXiv Detail & Related papers (2023-11-24T22:01:12Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.