論文の概要: MCP-MedSAM: A Powerful Lightweight Medical Segment Anything Model Trained with a Single GPU in Just One Day
- arxiv url: http://arxiv.org/abs/2412.05888v1
- Date: Sun, 08 Dec 2024 10:50:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:06.166076
- Title: MCP-MedSAM: A Powerful Lightweight Medical Segment Anything Model Trained with a Single GPU in Just One Day
- Title(参考訳): MCP-MedSAM: たった1日で1つのGPUでトレーニングできる軽量医療セグメントモデル
- Authors: Donghang Lyu, Ruochen Gao, Marius Staring,
- Abstract要約: 医用画像のセグメンテーションには、解剖学的構造や異常を識別することに焦点を当てて、医療画像を意味のある領域に分割することが含まれる。
Anything Model(SAM)は、様々なタスクのパフォーマンスを改善するために、医学領域に適応するよう研究者に促している。
MCP-MedSAMは、単一のGPU上で1日以内にトレーニングできるように設計された、強力で軽量な医療SAMモデルである。
- 参考スコア(独自算出の注目度): 0.6827423171182151
- License:
- Abstract: Medical image segmentation involves partitioning medical images into meaningful regions, with a focus on identifying anatomical structures or abnormalities. It has broad applications in healthcare, and deep learning methods have enabled significant advancements in automating this process. Recently, the introduction of the Segmentation Anything Model (SAM), the first foundation model for segmentation task, has prompted researchers to adapt it for the medical domain to improve performance across various tasks. However, SAM's large model size and high GPU requirements hinder its scalability and development in the medical domain. To address these challenges, research has increasingly focused on lightweight adaptations of SAM to reduce its parameter count, enabling training with limited GPU resources while maintaining competitive segmentation performance. In this work, we propose MCP-MedSAM, a powerful and lightweight medical SAM model designed to be trainable on a single GPU within one day while delivering superior segmentation performance. Our method was trained and evaluated using a large-scale challenge dataset\footnote{\url{https://www.codabench.org/competitions/1847}\label{comp}}, compared to top-ranking methods on the challenge leaderboard, MCP-MedSAM achieved superior performance while requiring only one day of training on a single GPU. The code is publicly available at \url{https://github.com/dong845/MCP-MedSAM}.
- Abstract(参考訳): 医用画像のセグメンテーションには、解剖学的構造や異常を識別することに焦点を当てて、医療画像を意味のある領域に分割することが含まれる。
医療分野に広く応用されており、ディープラーニング手法によってこのプロセスの自動化に大きな進歩がもたらされている。
近年、セグメンテーションタスクの最初の基礎モデルであるSAMの導入により、様々なタスクにおけるパフォーマンス向上のために、医学領域に適応するよう研究者に促されている。
しかし、SAMの大きなモデルサイズと高いGPU要求は、医療領域におけるスケーラビリティと開発を妨げる。
これらの課題に対処するため、SAMの軽量な適応を重視してパラメータ数を削減し、競争力のあるセグメンテーション性能を維持しながら、限られたGPUリソースによるトレーニングを可能にしている。
そこで本研究では,単一のGPU上で1日以内にトレーニング可能で,セグメンテーション性能も優れた,パワフルで軽量な医療SAMモデルであるMPP-MedSAMを提案する。
MCP-MedSAMは1つのGPUで1日のみのトレーニングを行ない、優れたパフォーマンスを達成できた。
コードは \url{https://github.com/dong845/MCP-MedSAM} で公開されている。
関連論文リスト
- Med-PerSAM: One-Shot Visual Prompt Tuning for Personalized Segment Anything Model in Medical Domain [30.700648813505158]
文脈内学習に適したプロンプトを組み込んだ事前学習モデルの活用は、NLPタスクにおいて極めて効果的であることが証明されている。
textbfMed-PerSAMは,医療領域向けに設計された,新規で簡単なワンショット・フレームワークである。
本モデルは,多様な2次元医用画像データセットにおいて,基礎モデルおよび従来のSAMベースのアプローチより優れる。
論文 参考訳(メタデータ) (2024-11-25T06:16:17Z) - Swin-LiteMedSAM: A Lightweight Box-Based Segment Anything Model for Large-Scale Medical Image Datasets [0.6827423171182151]
我々はLiteMedSAMの新しい変種であるSwin-LiteMedSAMを紹介する。
このモデルは、小さなSwin Transformerをイメージエンコーダとして統合し、複数の種類のプロンプトを組み込み、イメージエンコーダとマスクデコーダの間のスキップ接続を確立する。
textitSegment Anything in Medical Images on Laptop Challenge (CVPR 2024)では,セグメンテーション性能と速度のバランスが良好である。
論文 参考訳(メタデータ) (2024-09-11T10:35:42Z) - SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
本稿では,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案する。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
論文 参考訳(メタデータ) (2024-08-19T11:01:00Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
本研究は,まず,軽量学生モデルを蒸留するためのハードプロンプトサンプリングとハードマスク重み付け戦略を用いた,フルステージの知識蒸留法を提案する。
また、学習後の量子化を高速化可能なセグメンテーションタスクに適用し、計算コストをさらに削減する。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。