論文の概要: Swin-LiteMedSAM: A Lightweight Box-Based Segment Anything Model for Large-Scale Medical Image Datasets
- arxiv url: http://arxiv.org/abs/2409.07172v1
- Date: Wed, 11 Sep 2024 10:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:49:40.698680
- Title: Swin-LiteMedSAM: A Lightweight Box-Based Segment Anything Model for Large-Scale Medical Image Datasets
- Title(参考訳): Swin-LiteMedSAM:大規模医用画像データセットのための軽量ボックスベースセグメンテーションモデル
- Authors: Ruochen Gao, Donghang Lyu, Marius Staring,
- Abstract要約: 我々はLiteMedSAMの新しい変種であるSwin-LiteMedSAMを紹介する。
このモデルは、小さなSwin Transformerをイメージエンコーダとして統合し、複数の種類のプロンプトを組み込み、イメージエンコーダとマスクデコーダの間のスキップ接続を確立する。
textitSegment Anything in Medical Images on Laptop Challenge (CVPR 2024)では,セグメンテーション性能と速度のバランスが良好である。
- 参考スコア(独自算出の注目度): 0.6827423171182151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging is essential for the diagnosis and treatment of diseases, with medical image segmentation as a subtask receiving high attention. However, automatic medical image segmentation models are typically task-specific and struggle to handle multiple scenarios, such as different imaging modalities and regions of interest. With the introduction of the Segment Anything Model (SAM), training a universal model for various clinical scenarios has become feasible. Recently, several Medical SAM (MedSAM) methods have been proposed, but these models often rely on heavy image encoders to achieve high performance, which may not be practical for real-world applications due to their high computational demands and slow inference speed. To address this issue, a lightweight version of the MedSAM (LiteMedSAM) can provide a viable solution, achieving high performance while requiring fewer resources and less time. In this work, we introduce Swin-LiteMedSAM, a new variant of LiteMedSAM. This model integrates the tiny Swin Transformer as the image encoder, incorporates multiple types of prompts, including box-based points and scribble generated from a given bounding box, and establishes skip connections between the image encoder and the mask decoder. In the \textit{Segment Anything in Medical Images on Laptop} challenge (CVPR 2024), our approach strikes a good balance between segmentation performance and speed, demonstrating significantly improved overall results across multiple modalities compared to the LiteMedSAM baseline provided by the challenge organizers. Our proposed model achieved a DSC score of \textbf{0.8678} and an NSD score of \textbf{0.8844} on the validation set. On the final test set, it attained a DSC score of \textbf{0.8193} and an NSD score of \textbf{0.8461}, securing fourth place in the challenge.
- Abstract(参考訳): 医療画像は疾患の診断と治療に不可欠であり、医療画像のセグメンテーションは注目を浴びるサブタスクである。
しかしながら、自動的な医用画像分割モデルは一般にタスク固有であり、異なる画像のモダリティや関心領域など、複数のシナリオを扱うのに苦労する。
SAM(Segment Anything Model)の導入により,様々な臨床シナリオに対するユニバーサルモデルのトレーニングが実現可能になった。
近年、MedSAM法がいくつか提案されているが、これらのモデルは高性能を実現するために重画像エンコーダに頼っていることが多い。
この問題に対処するため、軽量バージョンのMedSAM(LiteMedSAM)は、少ないリソースと少ない時間で高いパフォーマンスを実現し、実行可能なソリューションを提供することができる。
本稿では,LiteMedSAMの新たな変種であるSwin-LiteMedSAMを紹介する。
このモデルは、小さなSwin Transformerをイメージエンコーダとして統合し、与えられたバウンディングボックスから生成されたボックスベースのポイントやスクリブルを含む複数の種類のプロンプトを組み込み、イメージエンコーダとマスクデコーダの間のスキップ接続を確立する。
The \textit{Segment Anything in Medical Images on Laptop} Challenge (CVPR 2024)では,課題オーガナイザが提供したLiteMedSAMベースラインと比較して,セグメンテーション性能と速度のバランスが良好である。
提案モデルでは,DSC スコアが \textbf{0.8678} で,NSD スコアが \textbf{0.8844} であった。
最終テストセットでは、DSCスコアは \textbf{0.8193} 、NSDスコアは \textbf{0.8461} となり、挑戦では4位となった。
関連論文リスト
- SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
本稿では,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案する。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
論文 参考訳(メタデータ) (2024-08-19T11:01:00Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
本稿では,医療画像の高速微調整のためのSegment Anything Model (SAM) の即時適応であるH-SAMを紹介する。
初期段階では、H-SAMはSAMのオリジナルのデコーダを使用して、より複雑なデコードプロセスの導出として、以前の確率マスクを生成する。
我々のH-SAMは、既存のプロンプトフリーSAMよりも平均Diceが4.78%改善していることを示す。
論文 参考訳(メタデータ) (2024-03-27T05:55:16Z) - BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model [65.92173280096588]
我々は,Segment Anything Model (SAM)における画像分解能変動の課題に対処する。
SAMはゼロショットの汎用性で知られており、さまざまな画像サイズを持つデータセットに直面するとパフォーマンスが低下する。
我々は、各トークンが隣り合う情報を優先順位付けできるバイアスモードのアテンションマスクを提案する。
論文 参考訳(メタデータ) (2024-01-04T15:34:44Z) - Multi-Prompt Fine-Tuning of Foundation Models for Enhanced Medical Image
Segmentation [10.946806607643689]
Segment Anything Model (SAM) は、自然画像セグメンテーションの革命的進歩を導入した強力な基礎モデルである。
本研究では,SAMのイメージ毎に複数のプロンプトをバンドルして処理する機能を活用した,新しい微調整フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-03T19:05:00Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。