Quantum Threat in Healthcare IoT: Challenges and Mitigation Strategies
- URL: http://arxiv.org/abs/2412.05904v1
- Date: Sun, 08 Dec 2024 11:48:14 GMT
- Title: Quantum Threat in Healthcare IoT: Challenges and Mitigation Strategies
- Authors: Asif Alif, Khondokar Fida Hasan, Jesse Laeuchli, Mohammad Jabed Morshed Chowdhury,
- Abstract summary: The Internet of Things (IoT) has transformed healthcare, facilitating remote patient monitoring, enhanced medication adherence, and chronic disease management.
This chapter examines the quantum threat to healthcare IoT security, highlighting the potential impacts of compromised encryption.
It introduces post-quantum cryptography (PQC) and quantum-resistant techniques like quantum key distribution (QKD)
- Score: 2.1842941116221826
- License:
- Abstract: The Internet of Things (IoT) has transformed healthcare, facilitating remote patient monitoring, enhanced medication adherence, and chronic disease management. However, this interconnected ecosystem faces significant vulnerabilities with the advent of quantum computing, which threatens to break existing encryption standards protecting sensitive patient data in IoT-enabled medical devices. This chapter examines the quantum threat to healthcare IoT security, highlighting the potential impacts of compromised encryption, including privacy breaches, device failures, and manipulated medical records. It introduces post-quantum cryptography (PQC) and quantum-resistant techniques like quantum key distribution (QKD), addressing their application in resource-constrained healthcare IoT devices such as pacemakers, monitoring tools, and telemedicine systems. The chapter further explores the challenges of integrating these solutions and reviews global efforts in mitigating quantum risks, offering insights into suitable PQC primitives for various healthcare use cases.
Related papers
- Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems [42.184783937646806]
We investigate the potential impact of quantum computing and machine learning (QML) on cybersecurity applications of traditional ML.
First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity.
Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems.
arXiv Detail & Related papers (2025-02-16T15:49:25Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.
We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Cybersecurity and Frequent Cyber Attacks on IoT Devices in Healthcare: Issues and Solutions [0.0]
Internet of Things (IoT) devices in healthcare have revolutionized patient care, offering improved monitoring, diagnostics, and treatment.
However, the proliferation of these devices has also introduced significant cybersecurity challenges.
This paper reviews the current landscape of cybersecurity threats targeting IoT devices in healthcare, discusses the underlying issues contributing to these vulnerabilities, and explores potential solutions.
arXiv Detail & Related papers (2025-01-20T03:29:07Z) - A Review on the Security Vulnerabilities of the IoMT against Malware Attacks and DDoS [0.0]
The Internet of Medical Things (IoMT) has transformed the healthcare industry by connecting medical devices in monitoring treatment outcomes of patients.
This literature review examines the vulnerabilities of IoMT devices, focusing on critical threats and exploring mitigation strategies.
arXiv Detail & Related papers (2025-01-13T21:29:06Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management [4.828148213747833]
This paper introduces a comprehensive quantum-based framework to overwhelm the potential security and privacy issues for secure healthcare data management.
The proposed framework delivers overall healthcare data management by coupling the advanced and more competent quantum approach with machine learning.
The experimental evaluation and comparison of the proposed IQ-HDM framework with state-of-the-art methods outline a considerable improvement up to 67.6%, in tackling cyber threats related to healthcare data security.
arXiv Detail & Related papers (2024-10-04T08:04:48Z) - HNMblock: Blockchain technology powered Healthcare Network Model for epidemiological monitoring, medical systems security, and wellness [6.2997667081978825]
This paper introduces HNMblock, a model that elevates the realms of epidemiological monitoring, medical system security, and wellness enhancement.
By harnessing the transparency and immutability inherent in blockchain, HNMblock empowers real-time, tamper-proof tracking of epidemiological data.
It fortifies the security of medical systems through advanced cryptographic techniques and smart contracts, with a paramount focus on safeguarding patient privacy.
arXiv Detail & Related papers (2024-02-10T21:57:22Z) - Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation [4.499833362998488]
This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices.
The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application.
arXiv Detail & Related papers (2024-01-17T10:55:26Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.