Towards Modeling Human-Agentic Collaborative Workflows: A BPMN Extension
- URL: http://arxiv.org/abs/2412.05958v2
- Date: Thu, 12 Dec 2024 09:10:32 GMT
- Title: Towards Modeling Human-Agentic Collaborative Workflows: A BPMN Extension
- Authors: Adem Ait, Javier Luis Cánovas Izquierdo, Jordi Cabot,
- Abstract summary: Large Language Models (LLMs) have facilitated the definition of autonomous intelligent agents.<n>The orchestration and coordination of these agents is still challenging.<n>Current business process modeling languages fall short when it comes to specifying these new mixed collaborative scenarios.<n>We extend a well-known process modeling language (i.e., BPMN) to enable the definition of this new type of workflow.
- Score: 2.031841135743809
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have facilitated the definition of autonomous intelligent agents. Such agents have already demonstrated their potential in solving complex tasks in different domains. And they can further increase their performance when collaborating with other agents in a multi-agent system. However, the orchestration and coordination of these agents is still challenging, especially when they need to interact with humans as part of human-agentic collaborative workflows. These kinds of workflows need to be precisely specified so that it is clear whose responsible for each task, what strategies agents can follow to complete individual tasks or how decisions will be taken when different alternatives are proposed, among others. Current business process modeling languages fall short when it comes to specifying these new mixed collaborative scenarios. In this exploratory paper, we extend a well-known process modeling language (i.e., BPMN) to enable the definition of this new type of workflow. Our extension covers both the formalization of the new metamodeling concepts required and the proposal of a BPMN-like graphical notation to facilitate the definition of these workflows. Our extension has been implemented and is available as an open-source human-agentic workflow modeling editor on GitHub.
Related papers
- A Survey on Agent Workflow -- Status and Future [2.817843718857682]
This survey provides a comprehensive review of agent workflow systems.<n>We classify existing systems along two key dimensions: functional capabilities and architectural features.<n>We highlight common patterns, potential technical challenges, and emerging trends.
arXiv Detail & Related papers (2025-08-02T04:15:30Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.
In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.
Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
We focus on designing a flexible agent engineering framework capable of handling complex use case applications across various domains.
The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents.
arXiv Detail & Related papers (2024-06-28T16:39:20Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Power-up! What Can Generative Models Do for Human Computation Workflows? [13.484359389266864]
Investigation into large language models (LLMs) as part of crowdsourcing remains an under-explored space.
From an empirical standpoint, little is currently understood about how LLMs can improve the effectiveness of crowdsourcing.
arXiv Detail & Related papers (2023-07-05T12:35:29Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.