Doubly Quantum Mechanics
- URL: http://arxiv.org/abs/2412.05997v2
- Date: Wed, 18 Dec 2024 16:34:52 GMT
- Title: Doubly Quantum Mechanics
- Authors: Vittorio D'Esposito, Giuseppe Fabiano, Domenico Frattulillo, Flavio Mercati,
- Abstract summary: We develop the formalism for spin-$frac12$ measurements by promoting the group of spatial rotations $SU(2)$ to the quantum group $SU_q(2)$.
We find that probability measurements are affected, in these configurations, by intrinsic uncertainties stemming from the quantum properties of $SU_q(2)$.
- Score: 0.0
- License:
- Abstract: Motivated by the expectation that relativistic symmetries might acquire quantum features in Quantum Gravity, we take the first steps towards a theory of ''Doubly'' Quantum Mechanics, a modification of Quantum Mechanics in which the geometrical configurations of physical systems, measurement apparata, and reference frame transformations are themselves quantized and described by ''geometry'' states in a Hilbert space. We develop the formalism for spin-$\frac{1}{2}$ measurements by promoting the group of spatial rotations $SU(2)$ to the quantum group $SU_q(2)$ and generalizing the axioms of Quantum Theory in a covariant way. As a consequence of our axioms, the notion of probability becomes a self-adjoint operator acting on the Hilbert space of geometry states, hence acquiring novel non-classical features. After introducing a suitable class of semi-classical geometry states, which describe near-to-classical geometrical configurations of physical systems, we find that probability measurements are affected, in these configurations, by intrinsic uncertainties stemming from the quantum properties of $SU_q(2)$. This feature translates into an unavoidable fuzziness for observers attempting to align their reference frames by exchanging qubits, even when the number of exchanged qubits approaches infinity, contrary to the standard $SU(2)$ case.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum reference frames, measurement schemes and the type of local algebras in quantum field theory [0.0]
We combine relativistic quantum measurement theory with quantum reference frames (QRFs)
Local measurements of a quantum field on a background with symmetries are performed relative to a QRF.
This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries.
arXiv Detail & Related papers (2024-03-18T17:11:44Z) - Simultaneous Momentum and Position Measurement and the Instrumental
Weyl-Heisenberg Group [0.0]
This paper shows how the concept of simultaneous measurement leads to a fundamental differential geometric problem.
The normalization, in particular, requires special handling in order to describe and understand the SPQM instrument.
arXiv Detail & Related papers (2023-06-01T18:00:02Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum and classical spin network algorithms for $q$-deformed
Kogut-Susskind gauge theories [0.0]
We introduce $q$-deformed Kogut-Susskind lattice gauge theories, obtained by deforming the defining symmetry algebra to a quantum group.
Our proposal simultaneously provides a controlled regularization of the infinite-dimensional local Hilbert space while preserving essential symmetry-related properties.
Our work gives a new perspective for the application of tensor network methods to high-energy physics.
arXiv Detail & Related papers (2023-04-05T15:49:20Z) - Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze [13.651587339535961]
We develop a framework for convolutional quantum circuits with SU$(d)$symmetry.
We prove Harrow's statement on equivalence between $nameSU(d)$ and $S_n$ irrep bases.
arXiv Detail & Related papers (2021-12-14T18:03:43Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - The classical limit of Schr\"{o}dinger operators in the framework of
Berezin quantization and spontaneous symmetry breaking as emergent phenomenon [0.0]
A strict deformation quantization is analysed on the classical phase space $bR2n$.
The existence of this classical limit is in particular proved for ground states of a wide class of Schr"odinger operators.
The support of the classical state is included in certain orbits in $bR2n$ depending on the symmetry of the potential.
arXiv Detail & Related papers (2021-03-22T14:55:57Z) - Symmetries of quantum evolutions [0.5735035463793007]
Wigner's theorem establishes that every symmetry of quantum state space must be either a unitary transformation, or an antiunitary transformation.
We show that it is impossible to extend the time reversal symmetry of unitary quantum dynamics to a symmetry of the full set of quantum evolutions.
Our no-go theorem implies that any time symmetric formulation of quantum theory must either restrict the set of the allowed evolutions, or modify the operational interpretation of quantum states and processes.
arXiv Detail & Related papers (2021-01-13T09:47:32Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.