論文の概要: New Additive OCBA Procedures for Robust Ranking and Selection
- arxiv url: http://arxiv.org/abs/2412.06020v1
- Date: Sun, 08 Dec 2024 18:42:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:53:58.503958
- Title: New Additive OCBA Procedures for Robust Ranking and Selection
- Title(参考訳): ロバストランキングと選択のための新しいOCBA法
- Authors: Yuchen Wan, Zaile Li, L. Jeff Hong,
- Abstract要約: 我々は,限られたサンプリング予算下での不正選択の可能性を最小限に抑えるため,新しい固定予算頑健なR&S手法を開発した。
そこで我々は,従来のOCBA法よりも頑健なOCBA法の優越性を検証するため,総合的な数値的研究を行った。
- 参考スコア(独自算出の注目度): 0.9558392439655016
- License:
- Abstract: Robust ranking and selection (R&S) is an important and challenging variation of conventional R&S that seeks to select the best alternative among a finite set of alternatives. It captures the common input uncertainty in the simulation model by using an ambiguity set to include multiple possible input distributions and shifts to select the best alternative with the smallest worst-case mean performance over the ambiguity set. In this paper, we aim at developing new fixed-budget robust R&S procedures to minimize the probability of incorrect selection (PICS) under a limited sampling budget. Inspired by an additive upper bound of the PICS, we derive a new asymptotically optimal solution to the budget allocation problem. Accordingly, we design a new sequential optimal computing budget allocation (OCBA) procedure to solve robust R&S problems efficiently. We then conduct a comprehensive numerical study to verify the superiority of our robust OCBA procedure over existing ones. The numerical study also provides insights on the budget allocation behaviors that lead to enhanced efficiency.
- Abstract(参考訳): ロバストランキングとセレクション(R&S)は、従来のR&Sの重要かつ挑戦的なバリエーションであり、有限個の代替案の中から最良の選択肢を選択しようとするものである。
複数の可能な入力分布とシフトを含むあいまい性セットを使用して、シミュレーションモデルにおける一般的な入力不確実性をキャプチャし、あいまい性セットよりも最小のケース平均性能で最適な選択肢を選択する。
本稿では,限られたサンプリング予算下での不正選択 (PICS) の可能性を最小化するために,新しい固定予算頑健なR&S手法を開発することを目的とする。
PICSの付加的な上界にインスパイアされ、予算配分問題に対する漸近的に最適な新しい解が導出される。
そこで我々は,ロバストなR&S問題を効率的に解くために,新しい逐次最適計算予算割当(OCBA)を設計する。
そこで我々は,従来のOCBA法よりも頑健なOCBA法の優越性を検証するため,総合的な数値的研究を行った。
数値的な研究は、効率の向上につながる予算配分の挙動に関する洞察も提供する。
関連論文リスト
- An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - EERO: Early Exit with Reject Option for Efficient Classification with
limited budget [0.0]
本稿では,早期退避の問題をリジェクションオプション付き複数分類器を使用する問題に翻訳する新しい手法であるEEROを提案する。
我々は、固定予算を保証するために指数重の集約を用いて、異なる頭部で出口の確率を調整する。
Cifar と ImageNet のデータセット上で ResNet-18 モデルと ConvNext アーキテクチャを用いて実験を行った結果,提案手法は予算配分を効果的に管理するだけでなく,過度なシナリオの正確性も向上することが示された。
論文 参考訳(メタデータ) (2024-02-06T07:50:27Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Best Arm Identification for Stochastic Rising Bandits [84.55453174601826]
SRB(Rising Bandits)は、選択される度に選択肢の期待される報酬が増加する、シーケンシャルな意思決定の問題をモデル化する。
本稿では,SRBの固定予算ベストアーム識別(BAI)問題に焦点をあてる。
R-UCBE と R-SR の2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-15T08:01:37Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Simplified Swarm Optimization for Bi-Objection Active Reliability
Redundancy Allocation Problems [1.5990720051907859]
信頼性冗長性割り当て問題(RRAP)は、システム設計、開発、管理においてよく知られた問題である。
本研究では, コスト制約を新たな目標として変更することにより, 両対象RRAPを定式化する。
提案課題を解決するために,ペナルティ関数を備えた新しい簡易スワム最適化 (SSO) ,実効1型ソリューション構造,数値ベースの自己適応型新しい更新機構,制約付き非支配型ソリューション選択,および新しいpBest代替ポリシーを開発した。
論文 参考訳(メタデータ) (2020-06-17T13:15:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。