論文の概要: Cloud Platforms for Developing Generative AI Solutions: A Scoping Review of Tools and Services
- arxiv url: http://arxiv.org/abs/2412.06044v1
- Date: Sun, 08 Dec 2024 19:49:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:28.042937
- Title: Cloud Platforms for Developing Generative AI Solutions: A Scoping Review of Tools and Services
- Title(参考訳): 生成AIソリューションを開発するためのクラウドプラットフォーム - ツールとサービスのスコープレビュー
- Authors: Dhavalkumar Patel, Ganesh Raut, Satya Narayan Cheetirala, Girish N Nadkarni, Robert Freeman, Benjamin S. Glicksberg, Eyal Klang, Prem Timsina,
- Abstract要約: Generative AIは、機械がコンテンツ、コード、デザインを作成できるようにすることで、エンタープライズアプリケーション開発を変革している。
クラウドコンピューティングは、生成AIモデルをトレーニング、デプロイ、スケールするためのインフラストラクチャを提供することによって、これらのニーズに対処する。
このレビューでは、生成AIのためのクラウドサービスを調べ、Amazon Web Services(AWS)、Microsoft Azure、Google Cloud、IBM Cloud、Oracle Cloud、Alibaba Cloudといった主要なプロバイダに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.27649989102029926
- License:
- Abstract: Generative AI is transforming enterprise application development by enabling machines to create content, code, and designs. These models, however, demand substantial computational power and data management. Cloud computing addresses these needs by offering infrastructure to train, deploy, and scale generative AI models. This review examines cloud services for generative AI, focusing on key providers like Amazon Web Services (AWS), Microsoft Azure, Google Cloud, IBM Cloud, Oracle Cloud, and Alibaba Cloud. It compares their strengths, weaknesses, and impact on enterprise growth. We explore the role of high-performance computing (HPC), serverless architectures, edge computing, and storage in supporting generative AI. We also highlight the significance of data management, networking, and AI-specific tools in building and deploying these models. Additionally, the review addresses security concerns, including data privacy, compliance, and AI model protection. It assesses the performance and cost efficiency of various cloud providers and presents case studies from healthcare, finance, and entertainment. We conclude by discussing challenges and future directions, such as technical hurdles, vendor lock-in, sustainability, and regulatory issues. Put together, this work can serve as a guide for practitioners and researchers looking to adopt cloud-based generative AI solutions, serving as a valuable guide to navigating the intricacies of this evolving field.
- Abstract(参考訳): Generative AIは、機械がコンテンツ、コード、デザインを作成できるようにすることで、エンタープライズアプリケーション開発を変革している。
しかし、これらのモデルは、かなりの計算能力とデータ管理を必要とする。
クラウドコンピューティングは、生成AIモデルをトレーニング、デプロイ、スケールするためのインフラストラクチャを提供することによって、これらのニーズに対処する。
このレビューでは、生成AIのためのクラウドサービスを調べ、Amazon Web Services(AWS)、Microsoft Azure、Google Cloud、IBM Cloud、Oracle Cloud、Alibaba Cloudといった主要なプロバイダに焦点を当てている。
彼らの強み、弱点、そして企業の成長への影響を比較します。
生成AIをサポートする上で、ハイパフォーマンスコンピューティング(HPC)、サーバレスアーキテクチャ、エッジコンピューティング、ストレージの役割について検討する。
また、これらのモデルの構築とデプロイにおいて、データ管理、ネットワーキング、AI固有のツールの重要性を強調します。
さらに、データプライバシ、コンプライアンス、AIモデル保護など、セキュリティ上の懸念にも対処している。
さまざまなクラウドプロバイダのパフォーマンスとコスト効率を評価し、医療、金融、エンターテイメントのケーススタディを提示する。
技術的なハードル、ベンダーのロックイン、サステナビリティ、規制問題といった課題と今後の方向性について議論することで、私たちは結論付けます。
この研究は、クラウドベースの生成AIソリューションを採用したい実践者や研究者のためのガイドとして役立ち、この進化する分野の複雑さをナビゲートするための貴重なガイドとして役立ちます。
関連論文リスト
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - AI-Driven Innovations in Modern Cloud Computing [2.3931689873603594]
本稿では,AIとクラウドコンピューティングがアプリケーションモダナイズのためのトランスフォーメーション機能を実現するためにどのように相互作用するかを考察する。
AIとクラウドの両技術の組み合わせによって、テクノロジプロバイダはインテリジェントなリソース管理、予測分析、自動デプロイメントとスケーリングを活用できるようになった。
論文 参考訳(メタデータ) (2024-10-21T12:45:10Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としている。
このビジョンペーパーは、まず要求をフレーミングし、次に設計決定について議論することで、そのようなフレームワークの基礎を定めています。
アプリケーションをオーケストレーションし,カオスエンジニアリングを使用してリアルタイム障害を注入するエージェント-クラウドインターフェースを活用したプロトタイプ実装であるAIOpsLabと,障害のローカライズと解決を行うエージェントとのインターフェースを提案する。
論文 参考訳(メタデータ) (2024-07-16T20:40:43Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
クラウドネイティブ技術と高度な機械学習推論の両方のパワーを利用するAIネイティブコンピューティングパラダイムについて説明する。
これらの共同作業は、コスト・オブ・グッド・ソード(COGS)を最適化し、資源のアクセシビリティを向上させることを目的としている。
論文 参考訳(メタデータ) (2024-01-17T20:34:11Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
近年、人工知能(AI)とクラウドコンピューティングの統合は、AIアプリケーションの計算要求の増加に対処するための有望な道として現れている。
本稿では,クラウドコンピューティングを活用したスケーラブルな分散AIフレームワークの総合的研究を行い,ディープラーニングの性能向上と効率化について述べる。
論文 参考訳(メタデータ) (2023-04-26T15:38:00Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - The MIT Supercloud Dataset [3.375826083518709]
我々は、大規模なHPCとデータセンター/クラウドオペレーションの分析において、革新的なAI/MLアプローチを促進することを目的とした、MIT Supercloudデータセットを紹介します。
我々は、ジョブ毎のCPUおよびGPU使用率、メモリ使用率、ファイルシステムログ、物理モニタリングデータを含む、MIT Supercloudシステムから詳細な監視ログを提供する。
本稿では,データセットの詳細,収集手法,データ可用性について論じ,このデータを用いて開発されている潜在的な課題について論じる。
論文 参考訳(メタデータ) (2021-08-04T13:06:17Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。