論文の概要: Quantum Algorithms for Optimal Power Flow
- arxiv url: http://arxiv.org/abs/2412.06177v1
- Date: Mon, 09 Dec 2024 03:27:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:31.652251
- Title: Quantum Algorithms for Optimal Power Flow
- Title(参考訳): 最適潮流の量子アルゴリズム
- Authors: Sajad Fathi Hafshejani, Md Mohsin Uddin, David Neufeld, Daya Gaur, Robert Benkoczi,
- Abstract要約: 本稿では,量子コンピューティング,特にHHLとVQLSのアルゴリズムを用いて,電力グリッドの最適電力流問題の解法について検討する。
- 参考スコア(独自算出の注目度): 0.2936007114555107
- License:
- Abstract: This paper explores the use of quantum computing, specifically the use of HHL and VQLS algorithms, to solve optimal power flow problem in electrical grids. We investigate the effectiveness of these quantum algorithms in comparison to classical methods. The simulation results presented here which substantially improve the results in [1] indicate that quantum approaches yield similar solutions and optimal costs compared to classical methods, suggesting the potential use case of quantum computing for power system optimization.
- Abstract(参考訳): 本稿では,量子コンピューティング,特にHHLとVQLSのアルゴリズムを用いて,電力グリッドの最適電力流問題の解法について検討する。
古典的手法と比較して,これらの量子アルゴリズムの有効性について検討する。
ここでのシミュレーションの結果は, [1] において, 量子アプローチが古典的手法と比較して, 同様の解と最適コストをもたらすことを示すものであり, 電力系統最適化における量子コンピューティングの可能性を示している。
関連論文リスト
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Hybrid Quantum-Classical Algorithms [0.0]
この論文は、古典的アルゴリズムと量子コンピューティングを組み合わせたハイブリッドアルゴリズムを探求し、古典的アルゴリズムの性能を向上させる。
ハイブリッド探索とサンプル最適化アルゴリズムと、化学における量子アルゴリズムのコストと性能を評価する古典的アルゴリズムの2つのアプローチが研究されている。
論文 参考訳(メタデータ) (2024-06-18T07:54:05Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
量子最適化近似アルゴリズム(QAOA)は、次数3グラフ上の古典的手法に匹敵する計算上の優位性を持つ。
結果として、最先端の量子ハードウェアに関係している小規模量子計算でさえ、比較可能な単純な古典よりも大きな優位性を持つ可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-17T16:42:05Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
変分量子アルゴリズム(英: Variational quantum algorithm)は、短期量子コンピュータで使用される技術の一種である。
実験的な測定をほとんど行わない変分回路のサロゲートモデルの学習について紹介する。
次に、元のデータとは対照的に、これらのモデルを用いてパラメータ最適化を行う。
論文 参考訳(メタデータ) (2022-04-12T00:15:17Z) - Quantum Optimization Heuristics with an Application to Knapsack Problems [5.866941279460248]
本稿では,量子近似最適化アルゴリズム(QAOA)を制約付き最適化問題に適合させる2つの手法を提案する。
最初のテクニックでは、初期の量子状態と混合操作を定義し、量子最適化アルゴリズムを調整して、この初期欲求解に関する可能な解を探索する方法が述べられている。
第2の手法は、グリーディ溶液の周りの局所的なミニマを避けるために、量子探索に使用される。
論文 参考訳(メタデータ) (2021-08-19T17:22:44Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Filtering variational quantum algorithms for combinatorial optimization [0.0]
本稿では、フィルタ演算子を用いて最適解への高速で信頼性の高い収束を実現する変分量子固有解法(F-VQE)を提案する。
また、量子コンピュータに必要な量子ビット数を減らすために因果錐を用いる方法についても検討する。
論文 参考訳(メタデータ) (2021-06-18T11:07:33Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。