論文の概要: XAttention: Block Sparse Attention with Antidiagonal Scoring
- arxiv url: http://arxiv.org/abs/2503.16428v1
- Date: Thu, 20 Mar 2025 17:59:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:48.808842
- Title: XAttention: Block Sparse Attention with Antidiagonal Scoring
- Title(参考訳): XAttention: 対角線強調によるブロックスパース注意
- Authors: Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, Song Han,
- Abstract要約: LCTM(Long-context Transformer Models)は、現実世界のアプリケーションには不可欠であるが、注意の2次複雑さのために計算コストが高い。
本稿では,Sparse attention を用いてトランスフォーマーモデルにおける長文推論を劇的に高速化するプラグイン・アンド・プレイフレームワーク XAttention を紹介する。
- 参考スコア(独自算出の注目度): 10.517760961650279
- License:
- Abstract: Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
- Abstract(参考訳): LCTM(Long-Context Transformer Models)は、現実世界のアプリケーションには不可欠であるが、注意の2次複雑さのために計算コストが高い。
ブロックスパース(Block-sparse)の注意は、重要な領域に計算を集中させることによってこれを緩和するが、既存の手法では、コストのかかるブロックの重要度測定のために精度と効率のバランスをとるのに苦労している。
本稿では,Sparse attentionを用いたトランスフォーマーモデルにおける長文推論を劇的に高速化するプラグイン・アンド・プレイフレームワークであるXAttentionを紹介する。
XAttention の重要な革新は、注意行列における反対角値(すなわち、左下から右上への)の和が、ブロックの重要性の強力なプロキシを提供するという洞察である。
これにより、非エンセシデントブロックの正確な識別とプルーニングが可能となり、高いスパーシリティと劇的に加速される推論をもたらす。
言語に対するRULERやLongBench、ビデオ理解のためのVideoMME、ビデオ生成のためのVBenchといった長文ベンチマークの包括的な評価を行った。
XAttentionは、十分な計算ゲインを提供しながら、完全な注意に匹敵する精度を達成する。
注意計算において最大13.5倍の加速度を示す。
これらの結果は、XAttentionがブロックスパースアテンションの実用的な可能性を解き明かし、現実世界のアプリケーションにスケーラブルで効率的なLCTMをデプロイする方法を開拓した。
コードはhttps://github.com/mit-han-lab/x-attention.comから入手できる。
関連論文リスト
- AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
本稿では,最初の学習に基づくクリティカルトークン識別手法であるAttentionPredictorを提案する。
注意予測器は、無視可能なメモリを消費しながら、注意スコアを正確に予測する。
また、トークン時間オーバーヘッドを隠蔽してデコードステージを高速化する、クロストークンクリティカルキャッシュプリフェッチフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs [0.0]
SparseAccelerateは動的スパースアテンション手法であり、入力特性に基づいてその疎度パターンを適応する。
実験結果から,SparseAccelerateは最大1.04倍のTTTF遅延を32Kトークンで達成した。
論文 参考訳(メタデータ) (2024-12-09T04:27:03Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
大規模視覚言語モデル(VLM)を加速するための有望なアプローチは、特定のレイヤからの注意マップのような部分的な情報を使用してトークンの重要性を評価し、重要度を低く抑えることである。
i) 重要な視覚的トークンを正確に識別するには,部分的注意情報は不十分であり,特に低トークン保持率において,最適なパフォーマンスをもたらす。 (ii) 全層に集約された注目マップのようなグローバルな注意情報は,より効果的に重要なトークンを保存し,攻撃的プルーニングの下で同等のパフォーマンスを維持する。 (iii) 小さなVLMから集約されたグローバルな注意マップは,大きなVLMとよく似ている。
論文 参考訳(メタデータ) (2024-12-04T13:56:44Z) - MAS-Attention: Memory-Aware Stream Processing for Attention Acceleration on Resource-Constrained Edge Devices [24.1144641404561]
本稿では,メモリ制約付きエッジアクセラレータ上での正確なアテンション推定高速化手法を提案する。
エッジコンピューティングのシナリオではFLAT (State-of-the-art attention fusion Method) と比較して,2.75倍のスピードアップと54%のエネルギー消費削減が見られた。
論文 参考訳(メタデータ) (2024-11-20T19:44:26Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
論文 参考訳(メタデータ) (2024-11-14T18:54:19Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
本稿では,頭部の疎度を用いてトランスフォーマーを高速化し,疎度をブロックし,注意の計算を減らし,メモリアクセスを減らし,新しいアルゴリズムアーキテクチャの共設計手法を提案する。
注目スコアと注目ヘッドの巨大な冗長性を観測し、実行時に注目行列内の重要でないブロックをプルーする整数ベースの行平衡ブロックプルーニングを提案する。
また、実行時に重要でないヘッドを検出およびプルーする整数ベースのヘッドプルーニングを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:15:16Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - Accurate Block Quantization in LLMs with Outliers [0.6138671548064355]
極大規模LLMの推理需要はここ数カ月で大きく伸びている。
この問題は処理中のシーケンスの長さが爆発的に増加することで増大する。
重みとアクティベーションの両方の正確な量子化を可能にする様々な量子化技術が提案されている。
論文 参考訳(メタデータ) (2024-03-29T12:15:06Z) - Constant Memory Attention Block [74.38724530521277]
Constant Memory Attention Block (CMAB) は、新しい汎用アテンションブロックであり、その出力を一定メモリで計算し、一定計算で更新を実行する。
提案手法は,メモリ効率を著しく向上しつつ,最先端技術と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T22:41:58Z) - Unlocking Pixels for Reinforcement Learning via Implicit Attention [61.666538764049854]
我々は最近,トランスフォーマーに非常に有効であることが示されている,新しい効率的なアテンションアルゴリズムを利用している。
これにより、注意に基づくコントローラは、より大きな視覚入力にスケールでき、より小さなパッチの使用が容易になります。
さらに,ソフトマックスの注目度をハイブリッドランダム特徴量で近似するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T17:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。