論文の概要: Representational Transfer Learning for Matrix Completion
- arxiv url: http://arxiv.org/abs/2412.06233v1
- Date: Mon, 09 Dec 2024 06:14:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:10.919228
- Title: Representational Transfer Learning for Matrix Completion
- Title(参考訳): 行列補完のための表現変換学習
- Authors: Yong He, Zeyu Li, Dong Liu, Kangxiang Qin, Jiahui Xie,
- Abstract要約: 本稿では,複数の情報源からの表現的知識を,特異部分空間情報を集約することで,目的の雑音行列完了タスクに転送することを提案する。
まず,2方向の主成分分析問題を解くことにより,線形表現情報を統合する。
元の高次元のターゲット行列完備化問題は、その後、低次元の線形回帰に変換される。
- 参考スコア(独自算出の注目度): 11.089932151845916
- License:
- Abstract: We propose to transfer representational knowledge from multiple sources to a target noisy matrix completion task by aggregating singular subspaces information. Under our representational similarity framework, we first integrate linear representation information by solving a two-way principal component analysis problem based on a properly debiased matrix-valued dataset. After acquiring better column and row representation estimators from the sources, the original high-dimensional target matrix completion problem is then transformed into a low-dimensional linear regression, of which the statistical efficiency is guaranteed. A variety of extensional arguments, including post-transfer statistical inference and robustness against negative transfer, are also discussed alongside. Finally, extensive simulation results and a number of real data cases are reported to support our claims.
- Abstract(参考訳): 本稿では,複数の情報源からの表現的知識を,特異部分空間情報を集約することで,目的の雑音行列完了タスクに転送することを提案する。
表現類似性フレームワークでは,まず2方向の主成分分析問題を適切にデバイアスされた行列値データセットに基づいて解き,線形表現情報を統合する。
より優れた列と行表現推定器をソースから取得した後、元の高次元ターゲット行列完成問題から低次元線形回帰へと変換され、統計的効率が保証される。
移動後の統計的推測や負の移動に対する頑健性など、様々な拡張的議論も同時に議論されている。
最後に、広範囲なシミュレーション結果と実際のデータケースを報告し、我々の主張を裏付ける。
関連論文リスト
- Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
潜在空間表現を復元するための拡張潜在多視点サブスペースクラスタリング(ELMSC)手法を提案する。
提案するELMSCは,最先端のマルチビュークラスタリング手法よりも高いクラスタリング性能を実現することができる。
論文 参考訳(メタデータ) (2023-12-22T15:28:55Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
行列データに対して行次元と列次元の両方に隠れたバリエーションを抽出するために,モードワイド・プリンシパル・サブスペース・スーツ (MOP-UP) と呼ばれる新しいフレームワークを導入する。
提案フレームワークの有効性と実用性は、シミュレーションと実データの両方の実験を通して実証される。
論文 参考訳(メタデータ) (2023-07-02T13:59:47Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
高次元関数の構造的符号系列表現による非パラメトリックトレース回帰モデルのためのフレームワークを開発する。
行列完備化の文脈において、我々のフレームワークは、行列の「符号ランク」と呼ばれるものに基づいて、かなりリッチなモデルへと導かれる。
論文 参考訳(メタデータ) (2021-05-04T22:20:00Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Deep Learning Approach for Matrix Completion Using Manifold Learning [3.04585143845864]
本論文では,線形モデルと非線形モデルを組み合わせたデータ行列の新しい潜在変数モデルを提案する。
データマトリクスのエントリ間の線形および非線形関係の両方に対処するために、新しいディープニューラルネットワークベースの行列補完アルゴリズムを設計します。
論文 参考訳(メタデータ) (2020-12-11T01:01:54Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Robust Matrix Completion with Mixed Data Types [0.0]
我々は,データ型が混在する部分的なエントリを持つ構造的低ランク行列を復元する問題を考察する。
ほとんどのアプローチは、基礎となる分布は1つしかないと仮定し、低階の制約は、行列 Satten Norm によって正則化される。
本稿では, 並列化に適したアルゴリズムフレームワークとともに, 高い回復保証を有する計算可能な統計手法を提案し, 混合データ型に対する部分的に観測されたエントリを持つ低階行列を1ステップで復元する。
論文 参考訳(メタデータ) (2020-05-25T21:35:10Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。