論文の概要: Is Self-Supervision Enough? Benchmarking Foundation Models Against End-to-End Training for Mitotic Figure Classification
- arxiv url: http://arxiv.org/abs/2412.06365v1
- Date: Mon, 09 Dec 2024 10:35:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:33.184031
- Title: Is Self-Supervision Enough? Benchmarking Foundation Models Against End-to-End Training for Mitotic Figure Classification
- Title(参考訳): セルフスーパービジョンは十分か? 組織図分類のためのエンド・ツー・エンドトレーニングに対するベンチマーク基礎モデル
- Authors: Jonathan Ganz, Jonas Ammeling, Emely Rosbach, Ludwig Lausser, Christof A. Bertram, Katharina Breininger, Marc Aubreville,
- Abstract要約: ファンデーションモデル(FM)は近年、病理学の領域で広く普及している。
本研究は, 有糸分裂型図形分類にも適用できる程度について検討する。
その結果,データ提供量にかかわらず,エンドツーエンド学習ベースラインがすべてのFM分類器を上回っていることが判明した。
- 参考スコア(独自算出の注目度): 0.37334049820361814
- License:
- Abstract: Foundation models (FMs), i.e., models trained on a vast amount of typically unlabeled data, have become popular and available recently for the domain of histopathology. The key idea is to extract semantically rich vectors from any input patch, allowing for the use of simple subsequent classification networks potentially reducing the required amounts of labeled data, and increasing domain robustness. In this work, we investigate to which degree this also holds for mitotic figure classification. Utilizing two popular public mitotic figure datasets, we compared linear probing of five publicly available FMs against models trained on ImageNet and a simple ResNet50 end-to-end-trained baseline. We found that the end-to-end-trained baseline outperformed all FM-based classifiers, regardless of the amount of data provided. Additionally, we did not observe the FM-based classifiers to be more robust against domain shifts, rendering both of the above assumptions incorrect.
- Abstract(参考訳): ファンデーションモデル(FM)、すなわち、典型的にはラベルのない膨大なデータに基づいて訓練されたモデルが、最近人気となり、病理学の領域で利用できるようになった。
キーとなるアイデアは、任意の入力パッチから意味的にリッチなベクトルを抽出し、単純な分類ネットワークを使用することで、ラベル付きデータの必要な量を削減し、ドメインの堅牢性を高めることである。
本研究は, 有糸分裂型図形分類にも適用できる程度について検討する。
2つの人気のあるパブリックなミトティックなフィギュアデータセットを利用することで、ImageNetでトレーニングされたモデルと、シンプルなResNet50のエンドツーエンドトレーニングベースラインに対して、公開可能な5つのFMの線形探索を比較した。
その結果,データ提供量にかかわらず,エンドツーエンド学習ベースラインがすべてのFM分類器を上回っていることが判明した。
さらに、FMベースの分類器がドメインシフトに対してより堅牢であることは見つからず、上記の仮定の両方が正しくない。
関連論文リスト
- Foundation Model or Finetune? Evaluation of few-shot semantic segmentation for river pollution [16.272314073324626]
ファンデーションモデル(FM)はAIの研究の一般的なトピックである。
本研究では,FMの性能を,セマンティックセグメンテーションのタスクにおける微調整された教師付きモデルと比較する。
微調整されたモデルは、データが不足している場合でも、テスト対象のFMより一貫して優れています。
論文 参考訳(メタデータ) (2024-09-05T17:59:32Z) - A separability-based approach to quantifying generalization: which layer is best? [0.0]
未確認データへの一般化は、ディープラーニングの分類と基礎モデルではよく理解されていない。
サンプル領域を表すネットワークのキャパシティを評価するための新しい手法を提案する。
i) 高い分類精度は高い一般化可能性を示すものではなく、(ii) モデルの深い層が必ずしも最良を一般化するとは限らない。
論文 参考訳(メタデータ) (2024-05-02T17:54:35Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph
Classification [10.806893809269074]
本稿では,ロバストな特徴抽出器と非バイアスな分類器を共同で学習するRAHNet(Retrieval Augmented Hybrid Network)を提案する。
特徴抽出学習の段階において,各クラスにおけるクラス内多様性を直接強化する関係グラフを探索するグラフ検索モジュールを開発する。
また、分類表現を得るために、カテゴリー中心の教師付きコントラスト損失を革新的に最適化する。
論文 参考訳(メタデータ) (2023-08-04T14:06:44Z) - Distilling BlackBox to Interpretable models for Efficient Transfer
Learning [19.40897632956169]
一般化可能なAIモデルの構築は、医療分野における大きな課題のひとつだ。
あるドメインから別のドメインに知識を転送するモデルを微調整するには、ターゲットドメイン内の大量のラベル付きデータが必要である。
本研究では,最小の計算コストで効率よく未確認対象領域に微調整できる解釈可能なモデルを開発する。
論文 参考訳(メタデータ) (2023-05-26T23:23:48Z) - GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes [0.4511923587827301]
本稿では,視覚的特徴学習と確率モデルを組み合わせた2段階アーキテクチャを提案する。
我々は、ソフトマックスヘッドを用いた等価ネットワークのベンチマークを上回り、サンプルサイズが12以下の場合の精度が向上し、3つの不均衡なクラスプロファイルに対する重み付きF1スコアが向上した。
論文 参考訳(メタデータ) (2022-12-01T15:19:42Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - Class Balancing GAN with a Classifier in the Loop [58.29090045399214]
本稿では,GANを学習するための理論的動機付けクラスバランス正則化器を提案する。
我々の正規化器は、訓練済みの分類器からの知識を利用して、データセット内のすべてのクラスのバランスの取れた学習を確実にします。
複数のデータセットにまたがる既存手法よりも優れた性能を達成し,長期分布の学習表現における正規化器の有用性を実証する。
論文 参考訳(メタデータ) (2021-06-17T11:41:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。