論文の概要: Low-Rank Matrix Factorizations with Volume-based Constraints and Regularizations
- arxiv url: http://arxiv.org/abs/2412.06380v1
- Date: Mon, 09 Dec 2024 10:58:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:49.343206
- Title: Low-Rank Matrix Factorizations with Volume-based Constraints and Regularizations
- Title(参考訳): ボリュームベース制約付き低ランク行列分解と正規化
- Authors: Olivier Vu Thanh,
- Abstract要約: この論文は、解釈可能性と特異性を高めるために設計されたボリュームベースの制約と正規化に焦点を当てている。
ブラインドソース分離やデータ計算の欠如といったアプリケーションによって動機付けられたこの論文は、効率的なアルゴリズムも提案している。
- 参考スコア(独自算出の注目度): 2.6687460222685226
- License:
- Abstract: Low-rank matrix factorizations are a class of linear models widely used in various fields such as machine learning, signal processing, and data analysis. These models approximate a matrix as the product of two smaller matrices, where the left matrix captures latent features while the right matrix linearly decomposes the data based on these features. There are many ways to define what makes a component "important." Standard LRMFs, such as the truncated singular value decomposition, focus on minimizing the distance between the original matrix and its low-rank approximation. In this thesis, the notion of "importance" is closely linked to interpretability and uniqueness, which are key to obtaining reliable and meaningful results. This thesis thus focuses on volume-based constraints and regularizations designed to enhance interpretability and uniqueness. We first introduce two new volume-constrained LRMFs designed to enhance these properties. The first assumes that data points are naturally bounded (e.g., movie ratings between 1 and 5 stars) and can be explained by convex combinations of features within the same bounds, allowing them to be interpreted in the same way as the data. The second model is more general, constraining the factors to belong to convex polytopes. Then, two variants of volume-regularized LRMFs are proposed. The first minimizes the volume of the latent features, encouraging them to cluster closely together, while the second maximizes the volume of the decompositions, promoting sparse representations. Across all these models, uniqueness is achieved under the core principle that the factors must be "sufficiently scattered" within their respective feasible sets. Motivated by applications such as blind source separation and missing data imputation, this thesis also proposes efficient algorithms that make these models practical for real-world applications.
- Abstract(参考訳): 低ランク行列分解 (low-rank matrix factorization) は、機械学習、信号処理、データ解析など様々な分野で広く使われている線形モデルのクラスである。
これらのモデルは、行列を2つの小さな行列の積として近似し、左行列は遅延特徴を捉え、右行列はこれらの特徴に基づいてデータを線形に分解する。
コンポーネントが"重要"な理由を定義するには、多くの方法があります。
切り離された特異値分解のような標準的な LRMF は、元の行列と低ランク近似の間の距離を最小化することに重点を置いている。
この論文では、「重要」という概念は、信頼性と意味のある結果を得るための鍵となる解釈可能性と特異性と密接に関連している。
この論文は、解釈可能性と特異性を高めるために設計されたボリュームベースの制約と正規化に焦点を当てている。
まず、これらの特性を高めるために、2つの新しいボリューム制約付きLEMFを導入する。
1つ目は、データポイントが自然に有界(例えば、1つから5つの星の間の映画評価)であると仮定し、同じ境界内にある特徴の凸結合によって説明できるので、データと同じ方法で解釈することができる。
2つ目のモデルはより一般的なもので、凸多面体に属する因子を制約する。
次に, 体積正則化 LRMF の2つの変種を提案する。
1つは潜在特徴の体積を最小化し、それらが密集するように促し、もう1つは分解の体積を最大化し、スパース表現を促進する。
これらのモデル全体において、各因子はそれぞれの実現可能な集合の中に「十分分散」されなければならないという中心原理の下で一意性が達成される。
ブラインドソース分離やデータ計算の欠如といったアプリケーションによって動機づけられたこの論文は、これらのモデルを現実世界のアプリケーションに実用的なものにする効率的なアルゴリズムも提案している。
関連論文リスト
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
行列データに対して行次元と列次元の両方に隠れたバリエーションを抽出するために,モードワイド・プリンシパル・サブスペース・スーツ (MOP-UP) と呼ばれる新しいフレームワークを導入する。
提案フレームワークの有効性と実用性は、シミュレーションと実データの両方の実験を通して実証される。
論文 参考訳(メタデータ) (2023-07-02T13:59:47Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal
Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint [0.0]
データ駆動制御と機械学習では、大きな行列を小さく、低ランクな要素に分解する、という一般的な要件がある。
本稿では,直交非負行列分解(ONMF)問題に対する革新的な解を提案する。
提案手法は,文献と同等あるいは改善された復元誤差を実現する。
論文 参考訳(メタデータ) (2022-10-06T04:30:59Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Identifiability in Exact Two-Layer Sparse Matrix Factorization [0.0]
スパース行列分解(sparse matrix factorization)は、L スパース因子 X(L) X(L--1) の積による行列 Z の近似の問題である。
本稿では,この問題に現れる識別可能性の問題に焦点をあてる。
論文 参考訳(メタデータ) (2021-10-04T07:56:37Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
ベイズ最適設定における行列記述と辞書学習の複雑なモデルについて考察する。
本稿では, 統計力学とランダム行列理論, スペクトル複製法を組み合わせた新しいレプリカ法を提案する。
論文 参考訳(メタデータ) (2021-09-14T12:02:32Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
双線形プールは細粒度視覚認識(FGVC)において大きな成功を収める
近年,行列パワー正規化は双線形特徴量において2次情報を安定化させることができることが示されている。
両線形表現を同時に正規化できる効率的な多目的行列正規化法(MOMN)を提案する。
論文 参考訳(メタデータ) (2020-03-30T08:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。