論文の概要: Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video
- arxiv url: http://arxiv.org/abs/2412.06424v2
- Date: Tue, 12 Aug 2025 07:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 14:32:15.892575
- Title: Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video
- Title(参考訳): Deblur4DGS:Blurry Monocular Videoから4Dガウススプレイティング
- Authors: Renlong Wu, Zhilu Zhang, Mingyang Chen, Zifei Yan, Wangmeng Zuo,
- Abstract要約: ぼやけたモノクロ映像から高品質な4Dモデルを再構成するためのDeblur4DGSを提案する。
我々は露光時間内の連続的動的表現を露光時間推定に変換する。
Deblur4DGSは、新規なビュー合成以外にも、複数の視点からぼやけたビデオを改善するために応用できる。
- 参考スコア(独自算出の注目度): 55.704264233274294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent 4D reconstruction methods have yielded impressive results but rely on sharp videos as supervision. However, motion blur often occurs in videos due to camera shake and object movement, while existing methods render blurry results when using such videos for reconstructing 4D models. Although a few approaches attempted to address the problem, they struggled to produce high-quality results, due to the inaccuracy in estimating continuous dynamic representations within the exposure time. Encouraged by recent works in 3D motion trajectory modeling using 3D Gaussian Splatting (3DGS), we take 3DGS as the scene representation manner, and propose Deblur4DGS to reconstruct a high-quality 4D model from blurry monocular video. Specifically, we transform continuous dynamic representations estimation within an exposure time into the exposure time estimation. Moreover, we introduce the exposure regularization term, multi-frame, and multi-resolution consistency regularization term to avoid trivial solutions. Furthermore, to better represent objects with large motion, we suggest blur-aware variable canonical Gaussians. Beyond novel-view synthesis, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame interpolation, and video stabilization. Extensive experiments in both synthetic and real-world data on the above four tasks show that Deblur4DGS outperforms state-of-the-art 4D reconstruction methods. The codes are available at https://github.com/ZcsrenlongZ/Deblur4DGS.
- Abstract(参考訳): 最近の4D再構成手法は印象的な結果をもたらしたが、監督はシャープビデオに依存している。
しかし、カメラの揺らぎや物体の動きによる動画のぼやけた動きは、既存の方法では、4Dモデルの再構成にこのようなビデオを使用するとぼやけた結果が出る。
いくつかのアプローチがこの問題に対処しようとしたが、露光時間内で連続的な動的表現を推定する不正確さのため、彼らは高品質な結果を生み出すのに苦労した。
3Dガウススプラッティング(3DGS)を用いた3次元運動軌跡モデリングの最近の研究により、3DGSをシーン表現の方法として捉え、ぼやけたモノクロ映像から高品質な4Dモデルを再構成するDeblur4DGSを提案する。
具体的には、露光時間内での連続的動的表現推定を露光時間推定に変換する。
さらに,露光規則化項,多フレーム,多解像度整合正則化項を導入し,自明な解を避ける。
さらに、大きな動きを持つ物体をよりよく表現するために、ぼやけた可変正準ガウスを示唆する。
Deblur4DGSは、新規なビュー合成以外にも、デブロアリング、フレーム補間、ビデオ安定化など、複数の視点からぼやけたビデオを改善するために応用することができる。
上記の4つのタスクの合成データと実世界のデータの両方における大規模な実験により、Deblur4DGSは最先端の4D再構成方法よりも優れていることが示された。
コードはhttps://github.com/ZcsrenlongZ/Deblur4DGSで公開されている。
関連論文リスト
- GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering [54.489285024494855]
ビデオの安定化は、元のユーザの動きの意図を保ちながら、望ましくないシャキネスを除去するので、ビデオ処理に欠かせない。
既存のアプローチは、運用するドメインによって、ユーザエクスペリエンスを低下させるいくつかの問題に悩まされます。
ビデオの安定化を時間的に一貫性のある局所的再構成とレンダリングのパラダイムとして再構成する,新しい3Dグラウンドアプローチである textbfGaVS を紹介する。
論文 参考訳(メタデータ) (2025-06-30T15:24:27Z) - BulletGen: Improving 4D Reconstruction with Bullet-Time Generation [15.225127596594582]
BulletGenは、生成モデルを利用してエラーを訂正し、動的なシーン表現で行方不明情報を完成させるアプローチである。
提案手法は,静的および動的シーン成分と生成コンテンツをシームレスにブレンドし,新しいビュー合成と2D/3Dトラッキングの両タスクの最先端結果を実現する。
論文 参考訳(メタデータ) (2025-06-23T13:03:42Z) - Can Video Diffusion Model Reconstruct 4D Geometry? [66.5454886982702]
Sora3Rは、カジュアルなビデオから4Dのポイントマップを推測するために、大きなダイナミックビデオ拡散モデルのリッチ・テンポラリなテンポラリなテンポラリな時間を利用する新しいフレームワークである。
実験により、Sora3Rはカメラのポーズと詳細なシーン形状の両方を確実に復元し、動的4D再構成のための最先端の手法と同等の性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-03-27T01:44:46Z) - GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking [38.104532522698285]
ビデオ拡散変換器(DiT)を直接訓練して4Dコンテンツを制御するには、高価なマルチビュービデオが必要である。
モノクロ・ダイナミック・ノベル・ビュー・シンセサイザー (MDVS) に触発され, 擬似4次元ガウス場を映像生成に適用した。
プレトレーニング済みのDiTを微調整して、GS-DiTと呼ばれるレンダリングされたビデオのガイダンスに従ってビデオを生成する。
論文 参考訳(メタデータ) (2025-01-05T23:55:33Z) - LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
シングルイメージの3D再構成は、コンピュータビジョンの根本的な課題である。
遅延ビデオ拡散モデルの最近の進歩は、大規模ビデオデータから学ぶ有望な3D事前情報を提供する。
本稿では,LVDMの生成先行情報を効果的にリリースするフレームワークであるLiftImage3Dを提案する。
論文 参考訳(メタデータ) (2024-12-12T18:58:42Z) - S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points [30.46796069720543]
本稿では,離散的な3次元制御点を用いた4次元実世界の再構成をストリーミングする手法を提案する。
この方法は局所光を物理的にモデル化し、運動デカップリング座標系を確立する。
従来のグラフィックスと学習可能なパイプラインを効果的にマージすることにより、堅牢で効率的なローカルな6自由度(6自由度)モーション表現を提供する。
論文 参考訳(メタデータ) (2024-08-23T12:51:49Z) - Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting [14.759265492381509]
本稿では,カメラパラメータの自己校正による高忠実度 4D GS シーン表現の学習手法を提案する。
3次元構造を頑健に表現する2次元点特徴の抽出を含む。
その結果,4次元新規ビュー合成における最先端手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2024-06-03T06:52:35Z) - EG4D: Explicit Generation of 4D Object without Score Distillation [105.63506584772331]
DG4Dは、スコア蒸留なしで高品質で一貫した4Dアセットを生成する新しいフレームワークである。
私たちのフレームワークは、世代品質のベースラインをかなりのマージンで上回ります。
論文 参考訳(メタデータ) (2024-05-28T12:47:22Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
動作と外観を分離するSC4Dという,効率的でスパース制御されたビデオ・ツー・4Dフレームワークを提案する。
我々の手法は、品質と効率の両面で既存の手法を超越している。
動作を多種多様な4Dエンティティにシームレスに転送する新しいアプリケーションを考案する。
論文 参考訳(メタデータ) (2024-04-04T18:05:18Z) - Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video [42.10482273572879]
本稿では,効率的な4Dオブジェクト生成フレームワークであるEfficient4Dを提案する。
異なるカメラビューの下で高品質な時空一貫性の画像を生成し、ラベル付きデータとして使用する。
合成ビデオと実ビデオの両方の実験によると、Efficient4Dのスピードは10倍に向上している。
論文 参考訳(メタデータ) (2024-01-16T18:58:36Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
textbf4DGenは、4Dコンテンツ作成のための新しいフレームワークである。
我々のパイプラインは、制御可能な4D生成を容易にし、ユーザがモノクロビデオで動きを指定したり、画像から映像への世代を適用できる。
既存のビデオから4Dのベースラインと比較すると,入力信号の忠実な再構成には優れた結果が得られる。
論文 参考訳(メタデータ) (2023-12-28T18:53:39Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
DG4D(DreamGaussian 4D:DreamGaussian 4D)はGaussian Splatting(GS)をベースとした効率的な4D生成フレームワークである。
我々の重要な洞察は、空間変換の明示的なモデリングと静的GSを組み合わせることで、4次元生成の効率的かつ強力な表現ができるということである。
ビデオ生成手法は、高画質の4D生成を向上し、価値ある時空間前兆を提供する可能性がある。
論文 参考訳(メタデータ) (2023-12-28T17:16:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。