論文の概要: BoRA: Bi-dimensional Weight-Decomposed Low-Rank Adaptation
- arxiv url: http://arxiv.org/abs/2412.06441v1
- Date: Mon, 09 Dec 2024 12:35:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:45.713896
- Title: BoRA: Bi-dimensional Weight-Decomposed Low-Rank Adaptation
- Title(参考訳): BoRA: 2次元重量分解低ランク適応
- Authors: Qiushi Wang, Yuchen Fan, Junwei Bao, Hongfei Jiang, Yang Song,
- Abstract要約: Low-Rank Adaptation (LoRA) は大規模事前学習モデルの適応性を著しく向上させた。
重量分解低ランク適応(DoRA)は、重量行列の大きさと方向成分を分離することにより、LoRA上で改善する。
BoRAは水平次元と垂直次元の対称特性によって特徴づけられる。
- 参考スコア(独自算出の注目度): 13.246021371295594
- License:
- Abstract: In recent years, Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) have significantly enhanced the adaptability of large-scale pre-trained models. Weight-Decomposed Low-Rank Adaptation (DoRA) improves upon LoRA by separating the magnitude and direction components of the weight matrix, leading to superior performance. However, DoRA's improvements are limited to the vertical dimension, resulting in an asymmetrical pattern between horizontal and vertical dimensions. This paper introduces BoRA, an innovative extension of LoRA and DoRA, characterized by symmetrical properties across horizontal and vertical dimensions. Our approach optimizes the weight matrix symmetrically by adjusting both column-wise and row-wise magnitudes. Extensive experiments demonstrate that BoRA surpasses state-of-the-art PEFT methods, including LoRA and DoRA, achieving superior results across various benchmarks.
- Abstract(参考訳): 近年,Low-Rank Adaptation (LoRA) のようなパラメータ効率の良いファインチューニング (PEFT) 手法は,大規模事前学習モデルの適応性を著しく向上させている。
重量分解低ランク適応(DoRA)は、重み行列の大きさと方向成分を分離することによりLoRA上で改善され、性能が向上する。
しかし、DoRAの改良は垂直次元に限られており、その結果、水平次元と垂直次元の間の非対称パターンが生じる。
本稿では,水平次元と垂直次元の対称特性を特徴とする,LoRAとDoRAの革新的拡張であるBoRAを紹介する。
提案手法は,カラムワイドと行ワイドの両等級を調整することにより,重み行列を対称的に最適化する。
大規模な実験により、BoRAはLoRAやDoRAを含む最先端のPEFT手法を超越し、様々なベンチマークで優れた結果が得られた。
関連論文リスト
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
そこで我々は,理論上基礎を成し,モジュールワイドなLoRAを実現する,DiffoRAと呼ばれる新しいPEFT方式を提案する。
DiffoRAの中核には微分適応行列(DAM)があり、どのモジュールが最も適しており、微調整に不可欠かを決定する。
提案手法は,様々なベンチマークにおいて,最先端のベースラインに対して最高のモデル精度を実現する。
論文 参考訳(メタデータ) (2025-02-13T02:41:34Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) は、事前学習した重量を大きさと方向の成分に分解する新しいPEFT法である。
EDoRAは、LoRAやDoRAのような最先端の手法と比較して、競争力や優れた性能を達成する。
論文 参考訳(メタデータ) (2025-01-21T11:42:09Z) - RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation [59.34193580856381]
Low-Rank Adaptation (LoRA) は大規模言語モデルの微調整に広く使われ、有効である。
本稿では,LoRAのスケーリング係数を最適化するシンプルな手法であるRoRA(Rank-adaptive Reliability Optimization)を提案する。
RoRAは、ランクサイズが大きくなるにつれて性能が向上し、微調整プルーニングモデルにおける精度回復というより困難な課題を克服する。
論文 参考訳(メタデータ) (2025-01-08T07:13:52Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
微調整された大言語モデル(LLM)は、全てのパラメータを更新する必要があるため、計算集約的である。
Low-Rank Adaptation (LoRA)は、重みのサブセットだけを変更することで効率を向上するが、表現性と計算コストのトレードオフをもたらす。
隠れ状態表現の内在的次元を計算し,LoRAランクを適応的に選択する新しいフレームワークGeLoRAを提案する。
論文 参考訳(メタデータ) (2024-12-12T13:04:54Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - BiDoRA: Bi-level Optimization-Based Weight-Decomposed Low-Rank Adaptation [34.1111413429869]
DoRAはローランク適応(LoRA)とフル微調整(FT)のギャップを橋渡しする
両レベル最適化に基づくPEFT法であるBiDoRAを提案する。
論文 参考訳(メタデータ) (2024-10-13T07:28:26Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。