Vulnerability, Where Art Thou? An Investigation of Vulnerability Management in Android Smartphone Chipsets
- URL: http://arxiv.org/abs/2412.06556v1
- Date: Mon, 09 Dec 2024 15:04:50 GMT
- Title: Vulnerability, Where Art Thou? An Investigation of Vulnerability Management in Android Smartphone Chipsets
- Authors: Daniel Klischies, Philipp Mackensen, Veelasha Moonsamy,
- Abstract summary: This paper provides an empirical study of the current state of smartphone chipset vulnerability management within the Android ecosystem.
We create a unified knowledge base of 3,676 chipset vulnerabilities affecting 437 chipset models from all four major chipset manufacturers, combined with 6,866 smartphone models.
We find that a single vulnerability often affects hundreds to thousands of different smartphone models, for which update availability is, as we show, often unclear or heavily delayed.
- Score: 2.1959918957023743
- License:
- Abstract: Vulnerabilities in Android smartphone chipsets have severe consequences, as recent real-world attacks have demonstrated that adversaries can leverage vulnerabilities to execute arbitrary code or exfiltrate confidential information. Despite the far-reaching impact of such attacks, the lifecycle of chipset vulnerabilities has yet to be investigated, with existing papers primarily investigating vulnerabilities in the Android operating system. This paper provides a comprehensive and empirical study of the current state of smartphone chipset vulnerability management within the Android ecosystem. For the first time, we create a unified knowledge base of 3,676 chipset vulnerabilities affecting 437 chipset models from all four major chipset manufacturers, combined with 6,866 smartphone models. Our analysis revealed that the same vulnerabilities are often included in multiple generations of chipsets, providing novel empirical evidence that vulnerabilities are inherited through multiple chipset generations. Furthermore, we demonstrate that the commonly accepted 90-day responsible vulnerability disclosure period is seldom adhered to. We find that a single vulnerability often affects hundreds to thousands of different smartphone models, for which update availability is, as we show, often unclear or heavily delayed. Leveraging the new insights gained from our empirical analysis, we recommend several changes that chipset manufacturers can implement to improve the security posture of their products. At the same time, our knowledge base enables academic researchers to conduct more representative evaluations of smartphone chipsets, accurately assess the impact of vulnerabilities they discover, and identify avenues for future research.
Related papers
- Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - There are More Fish in the Sea: Automated Vulnerability Repair via Binary Templates [4.907610470063863]
We propose a template-based automated vulnerability repair approach for Java binaries.
Experiments on the Vul4J dataset demonstrate that TemVUR successfully repairs 11 vulnerabilities.
To assess the generalizability of TemVUR, we curate the ManyVuls4J dataset.
arXiv Detail & Related papers (2024-11-27T06:59:45Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
We develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks.
For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation.
For cyberattack helpfulness, we construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment.
arXiv Detail & Related papers (2024-10-14T21:17:22Z) - Static Detection of Filesystem Vulnerabilities in Android Systems [18.472695251551176]
We present PathSentinel, which overcomes the limitations of previous techniques by combining static program analysis and access control policy analysis.
By unifying program and access control policy analysis, PathSentinel identifies attack surfaces accurately and prunes many impractical attacks.
To streamline vulnerability validation, PathSentinel leverages large language models (LLMs) to generate targeted exploit code.
arXiv Detail & Related papers (2024-07-15T23:10:52Z) - A Risk Estimation Study of Native Code Vulnerabilities in Android Applications [1.6078134198754157]
We propose a fast risk-based approach that provides a risk score related to the native part of an Android application.
We show that many applications contain well-known vulnerabilities that miscreants can potentially exploit.
arXiv Detail & Related papers (2024-06-04T06:44:07Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
We propose an automated collecting framework REEF to collect REal-world vulnErabilities and Fixes from open-source repositories.
We develop a multi-language crawler to collect vulnerabilities and their fixes, and design metrics to filter for high-quality vulnerability-fix pairs.
Through extensive experiments, we demonstrate that our approach can collect high-quality vulnerability-fix pairs and generate strong explanations.
arXiv Detail & Related papers (2023-09-15T02:50:08Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Transformer-based Vulnerability Detection in Code at EditTime:
Zero-shot, Few-shot, or Fine-tuning? [5.603751223376071]
We present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns.
We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%.
arXiv Detail & Related papers (2023-05-23T01:21:55Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - A Non-Intrusive Machine Learning Solution for Malware Detection and Data
Theft Classification in Smartphones [0.06999740786886537]
Successful mobile malware attacks could steal a user's location, photos, or even banking information.
There is a need besides just detecting malware intrusion in smartphones to also identify the data that has been stolen to assess, aid in recovery and prevent future attacks.
We propose an accessible, non-intrusive machine learning solution to not only detect malware intrusion but also identify the type of data stolen for any app under supervision.
arXiv Detail & Related papers (2021-02-12T13:31:27Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.