論文の概要: Toward LLM-Agent-Based Modeling of Transportation Systems: A Conceptual Framework
- arxiv url: http://arxiv.org/abs/2412.06681v1
- Date: Mon, 09 Dec 2024 17:24:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:53:38.162265
- Title: Toward LLM-Agent-Based Modeling of Transportation Systems: A Conceptual Framework
- Title(参考訳): LLM-Agent-based Modeling of Transportation Systems: a conceptual Framework
- Authors: Tianming Liu, Jirong Yang, Yafeng Yin,
- Abstract要約: 交通システムのための汎用LLMエージェントに基づくモデリングフレームワークを提案する。
我々の概念的枠組み設計は、人間の旅行者の意思決定と相互作用の過程と特性を忠実に再現する。
LLMエージェントに基づくモデリングフレームワークのさらなる改良が必要であるが、本手法は輸送システムのモデリングとシミュレーションを改善する可能性を秘めていると信じている。
- 参考スコア(独自算出の注目度): 15.11130742093296
- License:
- Abstract: In transportation system demand modeling and simulation, agent-based models and microsimulations are current state-of-the-art approaches. However, existing agent-based models still have some limitations on behavioral realism and resource demand that limit their applicability. In this study, leveraging the emerging technology of large language models (LLMs) and LLM-based agents, we propose a general LLM-agent-based modeling framework for transportation systems. We argue that LLM agents not only possess the essential capabilities to function as agents but also offer promising solutions to overcome some limitations of existing agent-based models. Our conceptual framework design closely replicates the decision-making and interaction processes and traits of human travelers within transportation networks, and we demonstrate that the proposed systems can meet critical behavioral criteria for decision-making and learning behaviors using related studies and a demonstrative example of LLM agents' learning and adjustment in the bottleneck setting. Although further refinement of the LLM-agent-based modeling framework is necessary, we believe that this approach has the potential to improve transportation system modeling and simulation.
- Abstract(参考訳): 輸送システムの需要モデリングとシミュレーションでは、エージェントベースモデルとマイクロシミュレーションが現在最先端のアプローチである。
しかし、既存のエージェントベースのモデルは、その適用性を制限する行動リアリズムとリソース要求にいくつかの制限がある。
本研究では,大規模言語モデル (LLM) と LLM ベースエージェントの新興技術を活用し,交通システムのための汎用 LLM エージェント・モデリング・フレームワークを提案する。
我々は、LLMエージェントがエージェントとして機能する重要な能力を持っているだけでなく、既存のエージェントベースモデルのいくつかの制限を克服するための有望なソリューションも提供すると主張している。
本研究の枠組みは,交通ネットワークにおける人的旅行者の意思決定・インタラクションのプロセス・特性を忠実に再現し,関連する研究とLLMエージェントの学習・調整の実証的な例を用いて,意思決定・学習行動の重要な行動基準を満たすことを実証する。
LLMエージェントに基づくモデリングフレームワークのさらなる改良が必要であるが、本手法は輸送システムのモデリングとシミュレーションを改善する可能性を秘めていると信じている。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - On the limits of agency in agent-based models [13.130587222524305]
エージェントベースモデリングは複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約によって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
論文 参考訳(メタデータ) (2024-09-14T04:17:24Z) - Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
本稿では,イベントログのモデリング,インテリジェントなモデリングアシスタント,モデリング操作の生成を組み合わせた概念的フレームワークを提案する。
特に、アーキテクチャは、設計者がシステムを指定するのを助け、その操作をグラフィカルなモデリング環境内で記録し、関連する操作を自動的に推奨する、モデリングコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-08-26T13:26:44Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - TrainerAgent: Customizable and Efficient Model Training through
LLM-Powered Multi-Agent System [14.019244136838017]
TrainerAgentは、タスク、データ、モデル、サーバーエージェントを含むマルチエージェントフレームワークである。
これらのエージェントは、ユーザ定義のタスク、入力データ、要求(例えば、精度、速度)を分析し、データとモデルの両方の観点からそれらを最適化して満足なモデルを取得し、最終的にこれらのモデルをオンラインサービスとしてデプロイする。
本研究は,従来のモデル開発と比較して,効率と品質が向上した望ましいモデルの実現において,大きな進歩を示すものである。
論文 参考訳(メタデータ) (2023-11-11T17:39:24Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMはタスク固有の微調整モデルを必要とせずに、課題を解決するための有望なツールとして登場した。
現在、このようなエージェントの設計と実装はアドホックであり、LLMベースのエージェントが自然に適用できる様々なタスクは、エージェント設計に一律に適合するアプローチが存在しないことを意味する。
エージェント構築のプロセスを簡単にする最小主義的生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T17:24:15Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。