DEEPER: Dense Electroencephalography Passage Retrieval
- URL: http://arxiv.org/abs/2412.06695v1
- Date: Mon, 09 Dec 2024 17:41:25 GMT
- Title: DEEPER: Dense Electroencephalography Passage Retrieval
- Authors: Niall McGuire, Yashar Moshfeghi,
- Abstract summary: We present DEEPER, a novel framework that enables direct retrieval of relevant passages from users' neural signals during naturalistic reading without intermediate text translation.<n>Building on dense retrieval architectures, DEEPER employs a dual-encoder approach with specialised components for processing neural data, mapping EEG signals and text passages into a shared semantic space.
- Score: 6.084958172018792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information retrieval systems have historically relied on explicit query formulation, requiring users to translate their information needs into text. This process is particularly disruptive during reading tasks, where users must interrupt their natural flow to formulate queries. We present DEEPER (Dense Electroencephalography Passage Retrieval), a novel framework that enables direct retrieval of relevant passages from users' neural signals during naturalistic reading without intermediate text translation. Building on dense retrieval architectures, DEEPER employs a dual-encoder approach with specialised components for processing neural data, mapping EEG signals and text passages into a shared semantic space. Through careful architecture design and cross-modal negative sampling strategies, our model learns to align neural patterns with their corresponding textual content. Experimental results on the ZuCo dataset demonstrate that direct brain-to-passage retrieval significantly outperforms current EEG-to-text baselines, achieving a 571% improvement in Precision@1. Our ablation studies reveal that the model successfully learns aligned representations between EEG and text modalities (0.29 cosine similarity), while our hard negative sampling strategy contributes to overall performance increases.
Related papers
- sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment [8.466223794246261]
We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model.
We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset.
arXiv Detail & Related papers (2025-04-20T03:01:42Z) - Bridging Brain Signals and Language: A Deep Learning Approach to EEG-to-Text Decoding [1.1655046053160683]
We introduce a special framework which changes conventional closed-vocabulary EEG-to-text decoding approaches.
This research aims to create a connection between open-vocabulary Text generation systems and human brain signal interpretation.
arXiv Detail & Related papers (2025-02-11T14:43:14Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Boosting Semi-Supervised Scene Text Recognition via Viewing and Summarizing [71.29488677105127]
Existing scene text recognition (STR) methods struggle to recognize challenging texts, especially for artistic and severely distorted characters.
We propose a contrastive learning-based STR framework by leveraging synthetic and real unlabeled data without any human cost.
Our method achieves SOTA performance (94.7% and 70.9% average accuracy on common benchmarks and Union14M-Benchmark.
arXiv Detail & Related papers (2024-11-23T15:24:47Z) - SEE: Semantically Aligned EEG-to-Text Translation [5.460650382586978]
Decoding neurophysiological signals into language is of great research interest within brain-computer interface (BCI) applications.
Current EEG-to-Text decoding approaches face challenges due to the huge domain gap between EEG recordings and raw texts.
We propose SEE: Semantically Aligned EEG-to-Text Translation, a novel method aimed at improving EEG-to-Text decoding.
arXiv Detail & Related papers (2024-09-14T05:37:15Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.
We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
arXiv Detail & Related papers (2024-08-08T03:40:25Z) - Advancing Aspect-Based Sentiment Analysis through Deep Learning Models [4.0064131990718606]
This study introduces an innovative edge-enhanced GCN, named SentiSys, to navigate the syntactic graph while preserving intact feature information.
The experimental results demonstrate enhanced performance in aspect-based sentiment analysis with the use of SentiSys.
arXiv Detail & Related papers (2024-04-04T07:31:56Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
The Handwritten Mathematical Expression Recognition (HMER) task is a critical branch in the field of OCR.
Recent studies have demonstrated that incorporating bidirectional context information significantly improves the performance of HMER models.
We propose the Mirror-Flipped Symbol Layout Tree (MF-SLT) and Bidirectional Asynchronous Training (BAT) structure.
arXiv Detail & Related papers (2023-12-31T09:24:21Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
We introduce a deep neural network that acquires interpretable representations by a hybrid structure of network-temporal encoding and recurrent attention blocks.
We demonstrate that our proposed architecture exceeds state-of-the-art results for emotion classification on the publicly available DEAP dataset.
arXiv Detail & Related papers (2023-07-06T15:35:14Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - End-to-End Active Speaker Detection [58.7097258722291]
We propose an end-to-end training network where feature learning and contextual predictions are jointly learned.
We also introduce intertemporal graph neural network (iGNN) blocks, which split the message passing according to the main sources of context in the ASD problem.
Experiments show that the aggregated features from the iGNN blocks are more suitable for ASD, resulting in state-of-the art performance.
arXiv Detail & Related papers (2022-03-27T08:55:28Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
We propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text.
Two novel strategies serve as indispensable components of our method.
arXiv Detail & Related papers (2022-03-01T11:13:00Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
A novel deep learning framework capable of doing subject-independent emotion recognition is presented.
A convolutional neural network (CNN) with attention framework is presented for performing the task.
The proposed approach has been validated using publicly available datasets.
arXiv Detail & Related papers (2021-06-07T09:41:15Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence [48.765579605145454]
We propose to explicitly segment target text into fragment units and align them with their data correspondences.
The resulting architecture maintains the same expressive power as neural attention models.
On both E2E and WebNLG benchmarks, we show the proposed model consistently outperforms its neural attention counterparts.
arXiv Detail & Related papers (2020-05-03T14:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.