論文の概要: Toward Non-Invasive Diagnosis of Bankart Lesions with Deep Learning
- arxiv url: http://arxiv.org/abs/2412.06717v1
- Date: Mon, 09 Dec 2024 18:04:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:48.131094
- Title: Toward Non-Invasive Diagnosis of Bankart Lesions with Deep Learning
- Title(参考訳): 深層学習によるバンクアート病変の非侵襲診断に向けて
- Authors: Sahil Sethi, Sai Reddy, Mansi Sakarvadia, Jordan Serotte, Darlington Nwaudo, Nicholas Maassen, Lewis Shi,
- Abstract要約: バンカート病変(Banart lesions)は、標準的なMRIでは診断的に困難である。
本研究は,標準MRIとMRAの両方において,Banart病変を検出するためのディープラーニング(DL)モデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Bankart lesions, or anterior-inferior glenoid labral tears, are diagnostically challenging on standard MRIs due to their subtle imaging features-often necessitating invasive MRI arthrograms (MRAs). This study develops deep learning (DL) models to detect Bankart lesions on both standard MRIs and MRAs, aiming to improve diagnostic accuracy and reduce reliance on MRAs. We curated a dataset of 586 shoulder MRIs (335 standard, 251 MRAs) from 558 patients who underwent arthroscopy. Ground truth labels were derived from intraoperative findings, the gold standard for Bankart lesion diagnosis. Separate DL models for MRAs and standard MRIs were trained using the Swin Transformer architecture, pre-trained on a public knee MRI dataset. Predictions from sagittal, axial, and coronal views were ensembled to optimize performance. The models were evaluated on a 20% hold-out test set (117 MRIs: 46 MRAs, 71 standard MRIs). Bankart lesions were identified in 31.9% of MRAs and 8.6% of standard MRIs. The models achieved AUCs of 0.87 (86% accuracy, 83% sensitivity, 86% specificity) and 0.90 (85% accuracy, 82% sensitivity, 86% specificity) on standard MRIs and MRAs, respectively. These results match or surpass radiologist performance on our dataset and reported literature metrics. Notably, our model's performance on non-invasive standard MRIs matched or surpassed the radiologists interpreting MRAs. This study demonstrates the feasibility of using DL to address the diagnostic challenges posed by subtle pathologies like Bankart lesions. Our models demonstrate potential to improve diagnostic confidence, reduce reliance on invasive imaging, and enhance accessibility to care.
- Abstract(参考訳): バンナート病変(Bandart lesions)は, 標準的なMRIで診断的に困難であり, その微妙な画像像, しばしば侵襲的MRI関節造影 (MRA) を必要とする。
本研究は,診断精度の向上とMRAへの依存度低減を目的とした,標準MRIとMRAの両方におけるBanart病変検出のためのディープラーニング(DL)モデルを開発した。
関節鏡下手術を施行した58例の肩部MRI586例(標準335例, MRA251例)について検討した。
術中所見は Bankart 病変の診断における金の基準であった。
MRAと標準MRIの別々のDLモデルを、公開膝MRIデータセットで事前トレーニングしたSwin Transformerアーキテクチャを用いて訓練した。
矢状、軸方向、およびコロナ視からの予測は、性能を最適化するために組み合わされた。
モデルは20%のホールドアウトテストセット(MRI:46MRA、標準MRI:71MRI)で評価された。
MRAの31.9%、標準MRIの8.6%にバンクアート病変が認められた。
モデルはそれぞれ標準MRIとMRAで0.87(精度86%、感度83%、特異性86%)と0.90(感度85%、感度82%、特異性86%)のAUCを達成した。
これらの結果は、我々のデータセット上での放射線学者のパフォーマンスと一致または超え、文献メトリクスを報告した。
特に,非侵襲的標準MRIにおける本モデルの性能は,MRAを解釈する放射線科医と一致または上回った。
本研究は,Banart病などの微妙な病態が引き起こす診断上の課題に対して,DLの有用性を示すものである。
本モデルでは, 診断信頼性の向上, 侵襲的画像への依存の低減, ケアへのアクセシビリティの向上が期待できる。
関連論文リスト
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
米国では、前立腺がんが男性の死因としては2番目に多く、2024年には35,250人が死亡している。
本稿では,複数のMRIモダリティを組み合わせて深層学習モデルを訓練し,臨床的に有意な前立腺癌予測のためのモデルの信頼性を高めることを検討する。
論文 参考訳(メタデータ) (2024-11-07T12:48:27Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
本稿では,がん診断の総合的精度を向上させるためのディープラーニングモデルを提案する。
一つのボクセルレベルの分類モデルを構築し、単純なパーセンテージ閾値で正のケースを判定する。
2つの臨床データから得られた実験から,提案手法が診断精度を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-30T14:59:57Z) - Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
本稿では,マルチパラメトリックMRI情報を統一構造内に組み込んだMOMEについて報告する。
MOMEは乳癌の正確かつ堅牢な同定を証明した。
BI-RADS 4患者の生検の必要性を7.3%減らし、AUROC0.709で3重陰性乳癌を分類し、AUROC0.694でネオアジュバント化学療法に対する病理学的完全反応を予測することができる。
論文 参考訳(メタデータ) (2024-08-08T05:04:13Z) - Diagnosing Bipolar Disorder from 3-D Structural Magnetic Resonance
Images Using a Hybrid GAN-CNN Method [0.0]
本研究では、3次元構造MRI画像(sMRI)から双極性障害(BD)を診断するためのハイブリッドGAN-CNNモデルを提案する。
その結果, 精度が75.8%, 感度が60.3%, 特異性が82.5%となり, 従来よりも3.5%高いことがわかった。
論文 参考訳(メタデータ) (2023-10-11T10:17:41Z) - Multivariate Analysis on Performance Gaps of Artificial Intelligence
Models in Screening Mammography [4.123006816939975]
異常分類のための深層学習モデルは,マンモグラフィーのスクリーニングにおいて良好に機能する。
モデル不全のリスクの増加に伴う人口統計学的、画像的、臨床的特徴はいまだに不明である。
年齢,人種,病理所見,組織密度,画像特徴によって定義されるサブグループによるモデル性能の評価を行った。
論文 参考訳(メタデータ) (2023-05-08T02:28:45Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
我々は2つの相補的な目的として自己と報告の補完を定式化し、マスク付きレコードモデリング(MRM)に基づく統一的な枠組みを提案する。
MRMは、知識強化されたセマンティック表現を学ぶためのマルチタスクスキームに従って、マスクされた画像パッチとマスクされたレポートトークンを再構築する。
具体的には、MRMはラベル効率の良い微調整において優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T18:33:32Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
我々は,bp-MRIにおける前立腺内病変の検出とセグメンテーションを改善するため,ディープラーニングモデルを開発した。
前立腺切除術による脱線をMRIでトレーニングした。
前立腺切除術をベースとした非局所的なMask R-CNNは、微調整と自己訓練により、すべての評価基準を大幅に改善した。
論文 参考訳(メタデータ) (2020-10-28T21:07:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。