ContRail: A Framework for Realistic Railway Image Synthesis using ControlNet
- URL: http://arxiv.org/abs/2412.06742v2
- Date: Tue, 10 Dec 2024 13:23:18 GMT
- Title: ContRail: A Framework for Realistic Railway Image Synthesis using ControlNet
- Authors: Andrei-Robert Alexandrescu, Razvan-Gabriel Petec, Alexandru Manole, Laura-Silvia Diosan,
- Abstract summary: Image Synthesis aims to address the limitation through the design of intelligent models capable of creating original and realistic images.
We propose the ContRail framework based on the novel Stable Diffusion model ControlNet.
We experiment with the task of synthetic railway image generation, where we improve the performance in rail-specific tasks.
- Score: 39.58317527488534
- License:
- Abstract: Deep Learning became an ubiquitous paradigm due to its extraordinary effectiveness and applicability in numerous domains. However, the approach suffers from the high demand of data required to achieve the potential of this type of model. An ever-increasing sub-field of Artificial Intelligence, Image Synthesis, aims to address this limitation through the design of intelligent models capable of creating original and realistic images, endeavour which could drastically reduce the need for real data. The Stable Diffusion generation paradigm recently propelled state-of-the-art approaches to exceed all previous benchmarks. In this work, we propose the ContRail framework based on the novel Stable Diffusion model ControlNet, which we empower through a multi-modal conditioning method. We experiment with the task of synthetic railway image generation, where we improve the performance in rail-specific tasks, such as rail semantic segmentation by enriching the dataset with realistic synthetic images.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images [35.195284384050325]
We present a new framework leveraging off-the-shelf generative models to generate synthetic training images.
We address class name ambiguity, lack of diversity in naive prompts, and domain shifts.
Our framework consistently enhances recognition model performance with more synthetic data.
arXiv Detail & Related papers (2023-12-04T18:35:27Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - Towards a Unified Approach to Single Image Deraining and Dehazing [16.383099109400156]
We develop a new physical model for the rain effect and show that the well-known atmosphere scattering model (ASM) for the haze effect naturally emerges as its homogeneous continuous limit.
We also propose a Densely Scale-Connected Attentive Network (DSCAN) that is suitable for both deraining and dehazing tasks.
arXiv Detail & Related papers (2021-03-26T01:35:43Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
We develop novel synthetic data generation and augmentation techniques for enhancing low/zero-sample learning in satellite imagery.
To test the effectiveness of synthetic imagery, we employ it in the training of detection models and our two stage model, and evaluate the resulting models on real satellite images.
arXiv Detail & Related papers (2021-01-29T22:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.