論文の概要: 3D Graph Attention Networks for High Fidelity Pediatric Glioma Segmentation
- arxiv url: http://arxiv.org/abs/2412.06743v1
- Date: Mon, 09 Dec 2024 18:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:18.616468
- Title: 3D Graph Attention Networks for High Fidelity Pediatric Glioma Segmentation
- Title(参考訳): 高忠実度小児グリオーマ分類のための3次元グラフ注意ネットワーク
- Authors: Harish Thangaraj, Diya Katariya, Eshaan Joshi, Sangeetha N,
- Abstract要約: 本研究は,小児グリオーマの自動セグメンテーションに適した空間的注意機構を備えた新しい3次元UNetアーキテクチャを提案する。
マルチパラメトリックMRIデータを用いたBraTS小児グリオーマデータセットを用いて、提案モデルはマルチスケールの特徴を捉え、腫瘍関連領域に選択的に参画する。
モデルの性能をDice類似度係数とHD95を用いて定量的に評価し, 複雑なグリオーマの構造が向上したことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Pediatric brain tumors, particularly gliomas, represent a significant cause of cancer related mortality in children with complex infiltrative growth patterns that complicate treatment. Early, accurate segmentation of these tumors in neuroimaging data is crucial for effective diagnosis and intervention planning. This study presents a novel 3D UNet architecture with a spatial attention mechanism tailored for automated segmentation of pediatric gliomas. Using the BraTS pediatric glioma dataset with multiparametric MRI data, the proposed model captures multi-scale features and selectively attends to tumor relevant regions, enhancing segmentation precision and reducing interference from surrounding tissue. The model's performance is quantitatively evaluated using the Dice similarity coefficient and HD95, demonstrating improved delineation of complex glioma structured. This approach offers a promising advancement in automating pediatric glioma segmentation, with the potential to improve clinical decision making and outcomes.
- Abstract(参考訳): 小児脳腫瘍、特にグリオーマは、治療を複雑にする複雑な浸潤成長パターンを持つ小児のがん関連死亡の重大な原因である。
神経画像データにおけるこれらの腫瘍の早期かつ正確なセグメンテーションは、効果的な診断と介入計画に不可欠である。
本研究は,小児グリオーマの自動セグメンテーションに適した空間的注意機構を備えた新しい3次元UNetアーキテクチャを提案する。
マルチパラメトリックMRIデータを用いたBraTS小児グリオーマデータセットを用いて、提案モデルはマルチスケールの特徴を捉え、腫瘍関連領域に選択的に参画し、セグメンテーション精度を高め、周囲の組織からの干渉を減らす。
モデルの性能をDice類似度係数とHD95を用いて定量的に評価し, 複雑なグリオーマの構造が向上したことを示す。
このアプローチは小児グリオーマセグメンテーションの自動化において有望な進歩をもたらし、臨床的な意思決定と結果を改善する可能性がある。
関連論文リスト
- Is Long Range Sequential Modeling Necessary For Colorectal Tumor Segmentation? [3.4031606383293154]
TransformersやMambaのような長距離ボリュームシーケンスモデリング機構は、3次元画像分割において高い精度を実現する能力に注目を集めている。
我々は,これらのグローバルトークンモデリング手法の有効性を,提案したMambaOutUNetに比較して評価した。
本研究は,ロバストな局所トークン相互作用が,関心領域が小さく,解剖学的に複雑である場合に,長距離モデリング技術より優れていることを示唆する。
論文 参考訳(メタデータ) (2025-02-10T23:24:01Z) - Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI [2.104687387907779]
本研究では,ハイブリッドトランスモデルと畳み込みニューラルネットワーク(CNN)を用いたアンサンブル学習の強みを活用した統合的アプローチを提案する。
本手法は,アキシャルアテンションとトランスフォーマーエンコーダを併用して,高機能な空間関係モデリングを行う。
その結果,Dice similarity Coefficient (DSC), Hausdorff Distance (HD95), Structure similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE) などの画期的な評価が得られた。
論文 参考訳(メタデータ) (2024-12-16T15:10:53Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
膵管腺癌 (PDAC) は, 治療の選択肢が限られる進行癌である。
本研究は,腫瘍血管の関与を自動的に評価するワークフローと深層学習に基づくセグメンテーションモデルを提案する。
論文 参考訳(メタデータ) (2023-10-01T10:39:38Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
ヒトの読者や放射線医は、臨床実践において、全身多臓器多臓器の検出と診断を日常的に行う。
ほとんどの医療用AIシステムは、いくつかの疾患のリストの狭い単一の臓器に焦点を当てて構築されている。
CancerUniT は、マルチ腫瘍予測の出力を持つクエリベースの Mask Transformer モデルである。
論文 参考訳(メタデータ) (2023-01-28T20:09:34Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。