Poison Attacks and Adversarial Prompts Against an Informed University Virtual Assistant
- URL: http://arxiv.org/abs/2412.06788v1
- Date: Sun, 03 Nov 2024 05:34:38 GMT
- Title: Poison Attacks and Adversarial Prompts Against an Informed University Virtual Assistant
- Authors: Ivan A. Fernandez, Subash Neupane, Sudip Mittal, Shahram Rahimi,
- Abstract summary: Large language models (LLMs) are particularly vulnerable to adversarial attacks.<n>The rapid development pace of AI-based systems is being driven by the potential of Generative AI (GenAI) to assist humans in decision making.<n>A threat actor can use security gaps, poor safeguards, and limited data governance to carry out attacks that grant unauthorized access to the system and its data.
- Score: 3.0874677990361246
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent research has shown that large language models (LLMs) are particularly vulnerable to adversarial attacks. Since the release of ChatGPT, various industries are adopting LLM-based chatbots and virtual assistants in their data workflows. The rapid development pace of AI-based systems is being driven by the potential of Generative AI (GenAI) to assist humans in decision making. The immense optimism behind GenAI often overshadows the adversarial risks associated with these technologies. A threat actor can use security gaps, poor safeguards, and limited data governance to carry out attacks that grant unauthorized access to the system and its data. As a proof-of-concept, we assess the performance of BarkPlug, the Mississippi State University chatbot, against data poison attacks from a red team perspective.
Related papers
- Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents [36.49717045080722]
This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios.
We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces.
To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks.
arXiv Detail & Related papers (2025-03-20T15:44:31Z) - Taking off the Rose-Tinted Glasses: A Critical Look at Adversarial ML Through the Lens of Evasion Attacks [11.830908033835728]
We argue that overly permissive attack and overly restrictive defensive threat models have hampered defense development in the ML domain.
We analyze adversarial machine learning from a system security perspective rather than an AI perspective.
arXiv Detail & Related papers (2024-10-15T21:33:23Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
This survey paper on offensive AI will comprehensively cover various aspects related to attacks against and using AI systems.
It will delve into the impact of offensive AI practices on different domains, including consumer, enterprise, and public digital infrastructure.
The paper will explore adversarial machine learning, attacks against AI models, infrastructure, and interfaces, along with offensive techniques like information gathering, social engineering, and weaponized AI.
arXiv Detail & Related papers (2024-09-26T17:36:22Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models [54.19289900203071]
The rise in popularity of text-to-image generative artificial intelligence has attracted widespread public interest.
We demonstrate that this technology can be attacked to generate content that subtly manipulates its users.
We propose a Backdoor Attack on text-to-image Generative Models (BAGM)
Our attack is the first to target three popular text-to-image generative models across three stages of the generative process.
arXiv Detail & Related papers (2023-07-31T08:34:24Z) - From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and
Privacy [0.0]
This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy.
The paper investigates how cyber offenders can use the GenAI tools in developing cyber attacks.
We will also discuss the social, legal, and ethical implications of ChatGPT.
arXiv Detail & Related papers (2023-07-03T00:36:57Z) - The Manipulation Problem: Conversational AI as a Threat to Epistemic
Agency [0.0]
The technology of Conversational AI has made significant advancements over the last eighteen months.
conversational agents are likely to be deployed in the near future that are designed to pursue targeted influence objectives.
Sometimes referred to as the "AI Manipulation Problem," the emerging risk is that consumers will unwittingly engage in real-time dialog with predatory AI agents.
arXiv Detail & Related papers (2023-06-19T04:09:16Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.