Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents
- URL: http://arxiv.org/abs/2503.16248v2
- Date: Wed, 30 Apr 2025 20:40:47 GMT
- Title: Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents
- Authors: Atharv Singh Patlan, Peiyao Sheng, S. Ashwin Hebbar, Prateek Mittal, Pramod Viswanath,
- Abstract summary: This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios.<n>We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces.<n>To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks.
- Score: 36.49717045080722
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks across 150+ realistic blockchain tasks, including token transfers, trading, bridges and cross-chain interactions and 500+ attack test cases using context manipulation. We systematically assess attack and defense strategies, analyzing factors like the influence of security prompts, reasoning models, and the effectiveness of alignment techniques. Our findings show that prompt-based defenses are insufficient when adversaries corrupt stored context, achieving significant attack success rates despite these defenses. Fine-tuning-based defenses offer a more robust alternative, substantially reducing attack success rates while preserving utility on single-step tasks. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.
Related papers
- A Framework for Evaluating Emerging Cyberattack Capabilities of AI [11.595840449117052]
This work introduces a novel evaluation framework that addresses limitations by: (1) examining the end-to-end attack chain, (2) identifying gaps in AI threat evaluation, and (3) helping defenders prioritize targeted mitigations.
We analyzed over 12,000 real-world instances of AI involvement in cyber incidents, catalogued by Google's Threat Intelligence Group, to curate seven representative attack chain archetypes.
We report on AI's potential to amplify offensive capabilities across specific attack stages, and offer recommendations for prioritizing defenses.
arXiv Detail & Related papers (2025-03-14T23:05:02Z) - OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities [0.0]
We demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations.
We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement.
We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats.
arXiv Detail & Related papers (2025-02-18T19:33:14Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
We argue that specific are required to describe and report security incidents of AI systems.<n>Existing frameworks for either non-AI security or generic AI safety incident reporting are insufficient to capture the specific properties of AI security.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Poison Attacks and Adversarial Prompts Against an Informed University Virtual Assistant [3.0874677990361246]
Large language models (LLMs) are particularly vulnerable to adversarial attacks.<n>The rapid development pace of AI-based systems is being driven by the potential of Generative AI (GenAI) to assist humans in decision making.<n>A threat actor can use security gaps, poor safeguards, and limited data governance to carry out attacks that grant unauthorized access to the system and its data.
arXiv Detail & Related papers (2024-11-03T05:34:38Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Interoperability and Explicable AI-based Zero-Day Attacks Detection Process in Smart Community [0.0]
This paper aims to explain how future technologies such as 6G mobile communication, Internet of Everything (IoE), Artificial Intelligence (AI), and Smart Contract embedded WPA3 protocol-based WiFi-8 can work together to prevent known attack vectors and provide protection against zero-day attacks.
arXiv Detail & Related papers (2024-08-06T03:11:36Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
An Artificial Intelligence (AI) agent is a software entity that autonomously performs tasks or makes decisions based on pre-defined objectives and data inputs.
This survey delves into the emerging security threats faced by AI agents, categorizing them into four critical knowledge gaps.
By systematically reviewing these threats, this paper highlights both the progress made and the existing limitations in safeguarding AI agents.
arXiv Detail & Related papers (2024-06-04T01:22:31Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
Given the escalating risks of malicious attacks in the finance sector, understanding adversarial strategies and robust defense mechanisms for machine learning models is critical.
We aim to investigate the current state and dynamics of adversarial attacks and defenses for neural network models that use sequential financial data as the input.
We have designed a competition that allows realistic and detailed investigation of problems in modern financial transaction data.
The participants compete directly against each other, so possible attacks and defenses are examined in close-to-real-life conditions.
arXiv Detail & Related papers (2023-08-22T12:53:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
We show for the first time that fallback strategies can be deliberately triggered by an adversary.
In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback.
We design two novel availability attacks, which show the practical relevance of these threats.
arXiv Detail & Related papers (2021-08-25T15:49:10Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.