Lossless Model Compression via Joint Low-Rank Factorization Optimization
- URL: http://arxiv.org/abs/2412.06867v1
- Date: Mon, 09 Dec 2024 09:37:54 GMT
- Title: Lossless Model Compression via Joint Low-Rank Factorization Optimization
- Authors: Boyang Zhang, Daning Cheng, Yunquan Zhang, Fangmin Liu, Jiake Tian,
- Abstract summary: Low-rank factorization is a popular model compression technique that minimizes the error $delta$ between approximated and original weight matrices.
Despite achieving performances close to the original models when $delta$ is optimized, a performance discrepancy remains due to the separate optimization processes for low-rank factorization and model performance.
We introduce a novel joint optimization strategy for lossless low-rank weight factorization, which, for the first time, enhances the model's performance beyond the original.
- Score: 3.318320512635214
- License:
- Abstract: Low-rank factorization is a popular model compression technique that minimizes the error $\delta$ between approximated and original weight matrices. Despite achieving performances close to the original models when $\delta$ is optimized, a performance discrepancy remains due to the separate optimization processes for low-rank factorization and model performance, resulting in unavoidable losses. We address this issue by introducing a novel joint optimization strategy for lossless low-rank weight factorization, which, for the first time, enhances the model's performance beyond the original. Our approach begins with a theoretical analysis of the relationship between low-rank factorization and model optimization objectives, establishing a precise perturbation range for matrix factorization errors on model performance. This challenge is then reformulated as a numerical rank deficiency problem with inequality constraints and develop a joint objective that simultaneously addresses factorization error and model performance. Based on the above analysis, we propose two optimization algorithms: \textbf{a lossless optimization algorithm} that maximizes model accuracy while ensuring compression, and \textbf{a compact optimization algorithm} that minimizes model size while preserving performance. These algorithms do not require fine-tuning and can directly compress numerous deep models to achieve lossless results. Our methods demonstrate robust efficacy across various vision and language tasks. For example, the compressed model reduced by 70\% on ResNext50 outperforms the original. Our code will be made public.
Related papers
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Soft Preference Optimization: Aligning Language Models to Expert Distributions [40.84391304598521]
SPO is a method for aligning generative models, such as Large Language Models (LLMs), with human preferences.
SPO integrates preference loss with a regularization term across the model's entire output distribution.
We showcase SPO's methodology, its theoretical foundation, and its comparative advantages in simplicity, computational efficiency, and alignment precision.
arXiv Detail & Related papers (2024-04-30T19:48:55Z) - Coupling Fairness and Pruning in a Single Run: a Bi-level Optimization
Perspective [17.394732703591462]
We propose a framework to jointly optimize the pruning mask and weight update processes with fairness constraints.
This framework is engineered to compress models that maintain performance while ensuring fairness in a single execution.
Our empirical analysis contrasts our framework with several mainstream pruning strategies, emphasizing our method's superiority in maintaining model fairness, performance, and efficiency.
arXiv Detail & Related papers (2023-12-15T20:08:53Z) - Refined Coreset Selection: Towards Minimal Coreset Size under Model
Performance Constraints [69.27190330994635]
Coreset selection is powerful in reducing computational costs and accelerating data processing for deep learning algorithms.
We propose an innovative method, which maintains optimization priority order over the model performance and coreset size.
Empirically, extensive experiments confirm its superiority, often yielding better model performance with smaller coreset sizes.
arXiv Detail & Related papers (2023-11-15T03:43:04Z) - Generative Models for Anomaly Detection and Design-Space Dimensionality
Reduction in Shape Optimization [0.0]
Our work presents a novel approach to shape optimization, with the twofold objective to improve the efficiency of global algorithms and to promote the generation of high-quality designs.
This is accomplished by reducing the number of the original design variables defining a new reduced subspace where the geometrical variance is maximized.
From the numerical results, the new framework improves the convergence of global optimization algorithms, while only designs with high-quality geometrical features are generated.
arXiv Detail & Related papers (2023-08-08T04:57:58Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.